Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

01-12-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys

Authors: F. Dagdelen, E. Balci, I. N. Qader, Y. Aydogdu, S. Saydam

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

TiNi-based Shape Memory Alloys (SMAs) are important materials that could be used in surgical applications despite the negative effects of the Ni element. In this study, the microstructure, phase transformation temperatures, and biocompatibility of an equiatomic TiNi, TiNiNb, and TiNiNbTa SMAs were examined by SEM-EDS, DSC, and electrochemical corrosive test, respectively. The arc-melting method was utilized to make five samples of Ti50Ni50 and Ti50Ni27Nb(23–x)Tax (x = 0, 1, 3, and 5 at %) SMAs. DSC results showed that the samples have a wide temperature hysteresis for B19' ↔ B2 phase transformation; also, the martensite onset temperatures above the room temperature. The XRD and SEM analyses indicated that the matrix phase has a B2 crystal structure at room temperature with β-Nb phase and friction of the non-dissolved B19' phase. Talium element was the dominant constituent in the dendritic microstructures. Electrochemical corrosion behaviors of the SMAs were investigated in artificial body fluid at room temperature. It was observed that Ni27Ti50Nb20Ta3 with 1.86 × 10–4 mmpy has the best corrosion rate compared to the other alloys.
Literature
1.
go back to reference I. N. Qader, M. Kök, F. Dağdelen, and Y. Aydoğdu, “A review of smart materials: researches and applications,” El-Cezerî J. Sci. Eng. 6 (3), 755–788 (2019). I. N. Qader, M. Kök, F. Dağdelen, and Y. Aydoğdu, “A review of smart materials: researches and applications,” El-Cezerî J. Sci. Eng. 6 (3), 755–788 (2019).
2.
go back to reference W.-T. Jhou, C. Wang, S. Ii, H.-S. Chiang, and C.‑H. Hsueh, “TiNiCuAg shape memory alloy films for biomedical applications,” J. Alloys Compd. 738, 336–344 (2018). CrossRef W.-T. Jhou, C. Wang, S. Ii, H.-S. Chiang, and C.‑H. Hsueh, “TiNiCuAg shape memory alloy films for biomedical applications,” J. Alloys Compd. 738, 336–344 (2018). CrossRef
3.
go back to reference C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, and Z. Chen, “Mechanical behaviors and biomedical applications of shape memory materials: a review,” AIMS Mater. Sci. 5 (4), 559 (2018). CrossRef C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, and Z. Chen, “Mechanical behaviors and biomedical applications of shape memory materials: a review,” AIMS Mater. Sci. 5 (4), 559 (2018). CrossRef
4.
go back to reference H. Rodrigue, W. Wang, M.-W. Han, T. J. Kim, and S.‑H. Ahn, “An overview of shape memory alloy-coupled actuators and robots,” Soft Rob. 4 (1), 3–15 (2017). CrossRef H. Rodrigue, W. Wang, M.-W. Han, T. J. Kim, and S.‑H. Ahn, “An overview of shape memory alloy-coupled actuators and robots,” Soft Rob. 4 (1), 3–15 (2017). CrossRef
5.
go back to reference S. Kalra, B. Bhattacharya, and B. Munjal, “Design of shape memory alloy actuated intelligent parabolic antenna for space applications,” Smart Mater. Struct. 26 (9), 095015 (2017). CrossRef S. Kalra, B. Bhattacharya, and B. Munjal, “Design of shape memory alloy actuated intelligent parabolic antenna for space applications,” Smart Mater. Struct. 26 (9), 095015 (2017). CrossRef
6.
go back to reference Shape Memory Alloys: Modeling and Engineering Applications, Ed. by D. C. Lagoudas (Springer-Verlag, New York, 2008). Shape Memory Alloys: Modeling and Engineering Applications, Ed. by D. C. Lagoudas (Springer-Verlag, New York, 2008).
7.
go back to reference M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications,” Anal. Bioanal. Chem. 381 (3), 557–567 (2005). CrossRef M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications,” Anal. Bioanal. Chem. 381 (3), 557–567 (2005). CrossRef
8.
go back to reference T. Mousavi, F. Karimzadeh, and M. Abbasi, “Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying,” Mater. Sci. Eng., A 487 (1–2), 46–51 (2008). CrossRef T. Mousavi, F. Karimzadeh, and M. Abbasi, “Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying,” Mater. Sci. Eng., A 487 (1–2), 46–51 (2008). CrossRef
9.
go back to reference C. Ying, J. Hai-Chang, R. Li-Jian, X. Li, and Z. Xin-Qing, “Mechanical behavior in NiTiNb shape memory alloys with low Nb content,” Intermetallics 19 (2), 217–220 (2011). CrossRef C. Ying, J. Hai-Chang, R. Li-Jian, X. Li, and Z. Xin-Qing, “Mechanical behavior in NiTiNb shape memory alloys with low Nb content,” Intermetallics 19 (2), 217–220 (2011). CrossRef
10.
go back to reference T. Duerig and K. Melton, “Wide hysteresis NiTiNb alloys,” in Proceedings of the 1st European Symp. on Martensitic Transformations in Science and Technology (ESOMAT 1989) (Bochum, 1989). T. Duerig and K. Melton, “Wide hysteresis NiTiNb alloys,” in Proceedings of the 1st European Symp. on Martensitic Transformations in Science and Technology (ESOMAT 1989) (Bochum, 1989).
11.
go back to reference F. Dagdelen, E. Balci, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca, S. S. Abdullah, and S. S. Mohammed, “Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys,” JOM 72 (4), 1664–1672 (2020). CrossRef F. Dagdelen, E. Balci, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca, S. S. Abdullah, and S. S. Mohammed, “Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys,” JOM 72 (4), 1664–1672 (2020). CrossRef
12.
go back to reference L. Zhao, T. Duerig, S. Justi, K. Melton, J. Proft, W. Yu, and C. Wayman, “The study of niobium-rich precipitates in a Ni–Ti–Nb shape memory alloy,” Scr. Metall. Mater. 24 (2), 221–225 (1990). CrossRef L. Zhao, T. Duerig, S. Justi, K. Melton, J. Proft, W. Yu, and C. Wayman, “The study of niobium-rich precipitates in a Ni–Ti–Nb shape memory alloy,” Scr. Metall. Mater. 24 (2), 221–225 (1990). CrossRef
13.
go back to reference K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci. 50 (5), 511–678 (2005). CrossRef K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci. 50 (5), 511–678 (2005). CrossRef
14.
go back to reference C. Zhang, L. Zhao, T. Duerig, and C. Wayman, “Effects of deformation on the transformation hysteresis and shape memory effect in a Ni 47Ti 44Nb 9 alloy,” Scr. Metall. Mater. 24 (9), 1807–1812 (1990). CrossRef C. Zhang, L. Zhao, T. Duerig, and C. Wayman, “Effects of deformation on the transformation hysteresis and shape memory effect in a Ni 47Ti 44Nb 9 alloy,” Scr. Metall. Mater. 24 (9), 1807–1812 (1990). CrossRef
15.
go back to reference S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, “Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys,” Metall. Trans. A 17 (1), 115–120 (1986). CrossRef S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, “Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys,” Metall. Trans. A 17 (1), 115–120 (1986). CrossRef
16.
go back to reference G. Bolat, D. Mareci, S. Iacoban, N. Cimpoesu, and C. Munteanu, “The estimation of corrosion behavior of NiTi and NiTiNb alloys using dynamic electrochemical impedance spectroscopy,” J. Spectrosc. 2013, 714920 (2013). G. Bolat, D. Mareci, S. Iacoban, N. Cimpoesu, and C. Munteanu, “The estimation of corrosion behavior of NiTi and NiTiNb alloys using dynamic electrochemical impedance spectroscopy,” J. Spectrosc. 2013, 714920 (2013).
17.
go back to reference D. Mareci, R. Chelariu, A. Cailean, and D. Sutiman, “Electrochemical characterization of Ni 47.7Ti 37.8Nb 14.5 shape memory alloy in artificial saliva,” Mater. Corros. 63 (9), 807–812 (2012). CrossRef D. Mareci, R. Chelariu, A. Cailean, and D. Sutiman, “Electrochemical characterization of Ni 47.7Ti 37.8Nb 14.5 shape memory alloy in artificial saliva,” Mater. Corros. 63 (9), 807–812 (2012). CrossRef
18.
go back to reference S. R. Chen and G. T. Gray, “Constitutive behavior of tantalum and tantalum-tungsten alloys,” Metall. Mater. Trans. A 27 (10), 2994–3006 (1996). CrossRef S. R. Chen and G. T. Gray, “Constitutive behavior of tantalum and tantalum-tungsten alloys,” Metall. Mater. Trans. A 27 (10), 2994–3006 (1996). CrossRef
19.
go back to reference C. Park, S. Kim, H.-E. Kim, and T.-S. Jang, “Mechanically stable tantalum coating on a nano-roughened NiTi stent for enhanced radiopacity and biocompatibility,” Surf. Coat. Technol. 305, 139–145 (2016). CrossRef C. Park, S. Kim, H.-E. Kim, and T.-S. Jang, “Mechanically stable tantalum coating on a nano-roughened NiTi stent for enhanced radiopacity and biocompatibility,” Surf. Coat. Technol. 305, 139–145 (2016). CrossRef
20.
go back to reference F. Dagdelen, M. Kok, and I. N. Qader, “Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy,” Met. Mater. Int. 25 (6), 1420–1427 (2019). CrossRef F. Dagdelen, M. Kok, and I. N. Qader, “Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy,” Met. Mater. Int. 25 (6), 1420–1427 (2019). CrossRef
21.
go back to reference I. N. Qader, M. Kök, and F. Dağdelen, “Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu–Al–Ni–Hf) shape memory alloy,” Phys. B (Amsterdam) 553, 1–5 (2019). CrossRef I. N. Qader, M. Kök, and F. Dağdelen, “Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu–Al–Ni–Hf) shape memory alloy,” Phys. B (Amsterdam) 553, 1–5 (2019). CrossRef
22.
go back to reference E. Ercan, F. Dagdelen, and I. N. Qader, “Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs,” J. Therm. Anal. Calorim. 139 (1), 29–36 (2020). CrossRef E. Ercan, F. Dagdelen, and I. N. Qader, “Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs,” J. Therm. Anal. Calorim. 139 (1), 29–36 (2020). CrossRef
23.
go back to reference M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen, and Y. Aydogdu, “Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy,” Mater. Res. Express 7 (1), 015702 (2019). CrossRef M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen, and Y. Aydogdu, “Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy,” Mater. Res. Express 7 (1), 015702 (2019). CrossRef
24.
go back to reference F. Dagdelen, C. Ozay, E. Ercan, G. Emir, and I. N. Qader, “Change of electrical resistivity during phase transitions in NiMnSn-based shape memory alloy,” J. Therm. Anal. Calorim., (2021). F. Dagdelen, C. Ozay, E. Ercan, G. Emir, and I. N. Qader, “Change of electrical resistivity during phase transitions in NiMnSn-based shape memory alloy,” J. Therm. Anal. Calorim., (2021).
25.
go back to reference C. Tatar, R. Acar, and I. N. Qader, “Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method,” Eur. Phys. J. Plus 135 (3), 311 (2020). CrossRef C. Tatar, R. Acar, and I. N. Qader, “Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method,” Eur. Phys. J. Plus 135 (3), 311 (2020). CrossRef
26.
go back to reference I. N. Qader, M. Kok, and Z. D. Cirak, “The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys,” J. Therm. Anal. Calorim. 145, 279–288 (2021). I. N. Qader, M. Kok, and Z. D. Cirak, “The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys,” J. Therm. Anal. Calorim. 145, 279–288 (2021).
27.
go back to reference M. Kök, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader, and E. Özen, “Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy,” J. Therm. Anal. Calorim. 139 (6), 3405–3413 (2020). CrossRef M. Kök, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader, and E. Özen, “Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy,” J. Therm. Anal. Calorim. 139 (6), 3405–3413 (2020). CrossRef
28.
go back to reference S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen, and Y. Aydoğdu, “Influence of Ta additive into Cu 84–xAl 13Ni 3 (wt %) shape memory alloy produced by induction melting,” Iran. J. Sci. Technol., Trans. A: Sci. 44 (4), 1167–1175 (2020). CrossRef S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen, and Y. Aydoğdu, “Influence of Ta additive into Cu 84–xAl 13Ni 3 (wt %) shape memory alloy produced by induction melting,” Iran. J. Sci. Technol., Trans. A: Sci. 44 (4), 1167–1175 (2020). CrossRef
29.
go back to reference I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen, and Y. Aydogdu, “The influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu 79–Al 12–Ni 4–Nb 5 (wt %) shape memory alloy,” Iran. J. Sci. Technol., Trans. A: Sci. 44 (3), 903–910 (2020). CrossRef I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen, and Y. Aydogdu, “The influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu 79–Al 12–Ni 4–Nb 5 (wt %) shape memory alloy,” Iran. J. Sci. Technol., Trans. A: Sci. 44 (3), 903–910 (2020). CrossRef
30.
go back to reference M. Kök, H. S. A. Zardawi, I. N. Qader, and M. Sait Kanca, “The effects of cobalt elements addition on Ti 2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys,” Eur. Phys. J. Plus 134 (5), 197 (2019). CrossRef M. Kök, H. S. A. Zardawi, I. N. Qader, and M. Sait Kanca, “The effects of cobalt elements addition on Ti 2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys,” Eur. Phys. J. Plus 134 (5), 197 (2019). CrossRef
31.
go back to reference E. Acar, M. Kok, and I. N. Qader, “Exploring surface oxidation behavior of NiTi–V alloys,” Eur. Phys. J. Plus 135 (1), 58 (2020). CrossRef E. Acar, M. Kok, and I. N. Qader, “Exploring surface oxidation behavior of NiTi–V alloys,” Eur. Phys. J. Plus 135 (1), 58 (2020). CrossRef
32.
go back to reference S. S. Mohammed, M. Kök, Z. D. Çirak, I. N. Qader, F. Dağdelen, and H. S. A. Zardawi, “The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys,” Phys. Met. Metallogr. 121 (14), 1411–1417 (2020). CrossRef S. S. Mohammed, M. Kök, Z. D. Çirak, I. N. Qader, F. Dağdelen, and H. S. A. Zardawi, “The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys,” Phys. Met. Metallogr. 121 (14), 1411–1417 (2020). CrossRef
33.
go back to reference F. Dagdelen and Y. Aydogdu, “Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs,” J. Therm. Anal. Calorim. 136 (2), 637–642 (2019). CrossRef F. Dagdelen and Y. Aydogdu, “Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs,” J. Therm. Anal. Calorim. 136 (2), 637–642 (2019). CrossRef
34.
go back to reference G. A. Sun, X. L. Wang, Y. D. Wang, W. C. Woo, H. Wang, X. P. Liu, B. Chen, Y. Q. Fu, L. S. Sheng, and Y. Ren, “In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni 47Ti 44Nb 9 shape memory alloy,” Mater. Sci. Eng., A 560, 458–465 (2013). CrossRef G. A. Sun, X. L. Wang, Y. D. Wang, W. C. Woo, H. Wang, X. P. Liu, B. Chen, Y. Q. Fu, L. S. Sheng, and Y. Ren, “In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni 47Ti 44Nb 9 shape memory alloy,” Mater. Sci. Eng., A 560, 458–465 (2013). CrossRef
35.
go back to reference S. Buytoz, F. Dagdelen, I. N. Qader, M. Kok, and B. Tanyildizi, “Microstructure analysis and thermal characteristics of NiTiHf shape memory alloy with different composition,” Met. Mater. Int. 27, 767–778 (2021). CrossRef S. Buytoz, F. Dagdelen, I. N. Qader, M. Kok, and B. Tanyildizi, “Microstructure analysis and thermal characteristics of NiTiHf shape memory alloy with different composition,” Met. Mater. Int. 27, 767–778 (2021). CrossRef
36.
go back to reference E. Balci, F. Dagdelen, I. N. Qader, and M. Kok, “Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA,” Eur. Phys. J. Plus 136 (2), 145 (2021). CrossRef E. Balci, F. Dagdelen, I. N. Qader, and M. Kok, “Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA,” Eur. Phys. J. Plus 136 (2), 145 (2021). CrossRef
37.
go back to reference I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca, and Y. Aydoğdu, “Mechanical and thermal behavior of Cu 84–xAl 13Ni 3Hf x shape memory alloys,” Iran. J. Sci. Technol., Trans. A: Sci. 45 (1), 343–349 (2021). CrossRef I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca, and Y. Aydoğdu, “Mechanical and thermal behavior of Cu 84–xAl 13Ni 3Hf x shape memory alloys,” Iran. J. Sci. Technol., Trans. A: Sci. 45 (1), 343–349 (2021). CrossRef
38.
go back to reference K. Rahmani, A. Sadooghi, and S. J. Hashemi, “The effect of Al 2O 3 content on tribology and corrosion properties of Mg–Al 2O 3 nanocomposites produced by single and double-action press,” Mater. Chem. Phys. 250, 123058 (2020). CrossRef K. Rahmani, A. Sadooghi, and S. J. Hashemi, “The effect of Al 2O 3 content on tribology and corrosion properties of Mg–Al 2O 3 nanocomposites produced by single and double-action press,” Mater. Chem. Phys. 250, 123058 (2020). CrossRef
39.
go back to reference R. Baboian, MNL20-2ND: Corrosion Tests and Standards: Application and Interpretation (ASTM International, West Conshohocken, PA, 2005). CrossRef R. Baboian, MNL20-2ND: Corrosion Tests and Standards: Application and Interpretation (ASTM International, West Conshohocken, PA, 2005). CrossRef
40.
go back to reference A. M. Najib, M. Z. Abdullah, A. A. Saad, Z. Samsudin, and F. Che Ani, “Numerical simulation of self-alignment of chip resistor components for different silver content during reflow soldering,” Microelectron. Reliabil. 79, 69–78 (2017). CrossRef A. M. Najib, M. Z. Abdullah, A. A. Saad, Z. Samsudin, and F. Che Ani, “Numerical simulation of self-alignment of chip resistor components for different silver content during reflow soldering,” Microelectron. Reliabil. 79, 69–78 (2017). CrossRef
Metadata
Title
Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys
Authors
F. Dagdelen
E. Balci
I. N. Qader
Y. Aydogdu
S. Saydam
Publication date
01-12-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140209