Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2019

05-03-2019

Effects of the Addition of Micro-amounts of Calcium on the Corrosion Resistance of Mg-0.1Mn-1.0Zn-xCa Biomaterials

Authors: Jin Wang, Jing-Yuan Li, Yuan Zhang, Wei-Ming Yu

Published in: Journal of Materials Engineering and Performance | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnesium alloys have good biocompatibility and degradability, which are considered ideal characteristics of biomedical implants. However, there are few studies on the influence of the addition of micro-amounts of Ca on magnesium alloys. In this work, the effects of adding micro-amounts of Ca on the microstructure, mechanical properties, and corrosion properties of Mg-0.1Mn-1.0Zn-xCa (x = 0.1, 0.2, and 0.3 wt.%) alloys were investigated. The results reveal that the grain size of the alloy decreased and the yield strength and elongation both increased with increasing Ca concentrations. Corrosion tests in Kokubo simulated body fluid showed that the in vitro immersion rate first slowed down and then increased (6.395 → 6.283 → 6.395 mm/year) with increasing Ca concentrations. This phenomenon was due to the addition of Ca causing grain refinement, which slowed the corrosion rate and generated an Mg2Ca phase to accelerate corrosion. The second-phase Mg2Ca precipitated at the grain boundary and acted as a cathode, and the metal magnesium phase acted as an anode to form a primary battery, which caused corrosion of the magnesium phase and accelerated the corrosion rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Zheng et al., Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg–Zn–Ca Alloy Wire for Biomaterial Application, J. Mater. Eng. Perform., 2018, 27(4), p 1837–1846CrossRef M. Zheng et al., Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg–Zn–Ca Alloy Wire for Biomaterial Application, J. Mater. Eng. Perform., 2018, 27(4), p 1837–1846CrossRef
2.
go back to reference G.U. Xue-Nan and Y.F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. Chin., 2010, 4(2), p 111–115CrossRef G.U. Xue-Nan and Y.F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. Chin., 2010, 4(2), p 111–115CrossRef
3.
go back to reference Y. Kawamura et al., Rapidly Solidified Powder Metallurgy Mg–Zn–1Y-2 Alloys with Excellent Tensile Yield Strength Above 600 MPa, Mater. Trans., 2001, 42(7), p 1172–1176CrossRef Y. Kawamura et al., Rapidly Solidified Powder Metallurgy Mg–Zn–1Y-2 Alloys with Excellent Tensile Yield Strength Above 600 MPa, Mater. Trans., 2001, 42(7), p 1172–1176CrossRef
4.
go back to reference J.B Park, J.D. Bronzino, Biomaterials: Principles and Applications, CRC Press, Boca Raton, Florida 2003 J.B Park, J.D. Bronzino, Biomaterials: Principles and Applications, CRC Press, Boca Raton, Florida 2003
5.
go back to reference Z.H. Chen et al., Microstructure Characterisation and Mechanical Properties of Rapidly Solidified Mg–Zn–Ca Alloys with Ce Addition, Metal Sci. J., 2008, 24(7), p 848–855 Z.H. Chen et al., Microstructure Characterisation and Mechanical Properties of Rapidly Solidified Mg–Zn–Ca Alloys with Ce Addition, Metal Sci. J., 2008, 24(7), p 848–855
6.
go back to reference M.P. Staiger et al., Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734CrossRef M.P. Staiger et al., Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734CrossRef
7.
go back to reference Y. Kawamura et al., High Strength Nanocrystalline Mg–Al–Ca Alloys Produced by Rapidly Solidified Powder Metallurgy Processing, Mater. Sci. Forum, 2000, 350–351, p 111–116CrossRef Y. Kawamura et al., High Strength Nanocrystalline Mg–Al–Ca Alloys Produced by Rapidly Solidified Powder Metallurgy Processing, Mater. Sci. Forum, 2000, 350–351, p 111–116CrossRef
8.
go back to reference N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 2013, 29(6), p 489–502CrossRef N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 2013, 29(6), p 489–502CrossRef
9.
go back to reference M. AlvarezLopez et al., Corrosion Behaviour of AZ31 Magnesium Alloy with Different Grain Sizes in Simulated Biological Fluids, Acta Biomater., 2010, 6(5), p 1763–1771CrossRef M. AlvarezLopez et al., Corrosion Behaviour of AZ31 Magnesium Alloy with Different Grain Sizes in Simulated Biological Fluids, Acta Biomater., 2010, 6(5), p 1763–1771CrossRef
10.
go back to reference E. Salernitano and C. Migliaresi, Composite Materials for Biomedical Applications: A Review, Int. J. Artif. Organs, 1980, 3(2), p 114CrossRef E. Salernitano and C. Migliaresi, Composite Materials for Biomedical Applications: A Review, Int. J. Artif. Organs, 1980, 3(2), p 114CrossRef
11.
go back to reference İlhan Çelik, Structure and Surface Properties of Al2O3–TiO2, Ceramic Coated AZ31 Magnesium Alloy, Ceram. Int., 2016, 42(12), p 13659–13663CrossRef İlhan Çelik, Structure and Surface Properties of Al2O3–TiO2, Ceramic Coated AZ31 Magnesium Alloy, Ceram. Int., 2016, 42(12), p 13659–13663CrossRef
12.
go back to reference Y. Guangyin et al., Mechanical Properties and Microstructure of Mg–Al–Zn–Si-Base Alloy, Mater. Trans., 2005, 44(4), p 458–462CrossRef Y. Guangyin et al., Mechanical Properties and Microstructure of Mg–Al–Zn–Si-Base Alloy, Mater. Trans., 2005, 44(4), p 458–462CrossRef
13.
go back to reference Y. Yan et al., Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg–6 wt% Zn Scaffolds for Bone Tissue Engineering, J. Mater. Eng. Perform., 2018, 27(3), p 970–984CrossRef Y. Yan et al., Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg–6 wt% Zn Scaffolds for Bone Tissue Engineering, J. Mater. Eng. Perform., 2018, 27(3), p 970–984CrossRef
14.
go back to reference Z. Li et al., The Development of Binary Mg–Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29(10), p 1329–1344CrossRef Z. Li et al., The Development of Binary Mg–Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29(10), p 1329–1344CrossRef
15.
go back to reference F. Witte et al., In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26(17), p 3557–3563CrossRef F. Witte et al., In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26(17), p 3557–3563CrossRef
16.
go back to reference Guangling Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49(4), p 1696–1701CrossRef Guangling Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49(4), p 1696–1701CrossRef
17.
go back to reference B. Song et al., Improving Tensile and Compressive Properties of Magnesium Alloy Plates by Pre-cold Rolling, Scripta Mater., 2012, 66(12), p 1061–1064CrossRef B. Song et al., Improving Tensile and Compressive Properties of Magnesium Alloy Plates by Pre-cold Rolling, Scripta Mater., 2012, 66(12), p 1061–1064CrossRef
18.
go back to reference X. Gu et al., In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30(4), p 484–498CrossRef X. Gu et al., In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30(4), p 484–498CrossRef
19.
go back to reference Alan A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes Alloys, 2013, 1(1), p 2–22CrossRef Alan A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes Alloys, 2013, 1(1), p 2–22CrossRef
20.
go back to reference C.J. Bettles, M.A. Gibson, and K. Venkatesan, Enhanced Age-Hardening Behaviour in Mg–4 wt% Zn Micro-alloyed with Ca, Scripta Mater., 2004, 51(3), p 193–197CrossRef C.J. Bettles, M.A. Gibson, and K. Venkatesan, Enhanced Age-Hardening Behaviour in Mg–4 wt% Zn Micro-alloyed with Ca, Scripta Mater., 2004, 51(3), p 193–197CrossRef
21.
go back to reference J. Yuan et al., Thermal Characteristics of Mg–Zn–Mn Alloys with High Specific Strength and High Thermal Conductivity, J. Alloys Compd., 2013, 578(6), p 32–36CrossRef J. Yuan et al., Thermal Characteristics of Mg–Zn–Mn Alloys with High Specific Strength and High Thermal Conductivity, J. Alloys Compd., 2013, 578(6), p 32–36CrossRef
22.
go back to reference L. Wang et al., Microstructure, Mechanical and Bio-corrosion Properties of Mg–Zn–Zr Alloys with Minor Ca Addition, Metal Sci. J., 2016, 33(1), p 9–16 L. Wang et al., Microstructure, Mechanical and Bio-corrosion Properties of Mg–Zn–Zr Alloys with Minor Ca Addition, Metal Sci. J., 2016, 33(1), p 9–16
23.
go back to reference H.M. Zhu et al., Microstructure and Mechanical Properties of Mg–6Zn– x Cu–0.6Zr (wt%) Alloys, J. Alloys Compd., 2011, 509(8), p 3526–3531CrossRef H.M. Zhu et al., Microstructure and Mechanical Properties of Mg–6Zn– x Cu–0.6Zr (wt%) Alloys, J. Alloys Compd., 2011, 509(8), p 3526–3531CrossRef
24.
go back to reference J. Yuan et al., Anisotropy of Thermal Conductivity and Mechanical Properties in Mg–5Zn–1Mn Alloy, Mater. Des., 2012, 40, p 257–261CrossRef J. Yuan et al., Anisotropy of Thermal Conductivity and Mechanical Properties in Mg–5Zn–1Mn Alloy, Mater. Des., 2012, 40, p 257–261CrossRef
25.
go back to reference C.L. Mendis, K. Oh-Ishi, and K. Hono, Enhanced Age Hardening in a Mg–2.4at.% Zn Alloy by Micro Additions of Ag and Ca, Scripta Mater., 2007, 57(6), p 485–488CrossRef C.L. Mendis, K. Oh-Ishi, and K. Hono, Enhanced Age Hardening in a Mg–2.4at.% Zn Alloy by Micro Additions of Ag and Ca, Scripta Mater., 2007, 57(6), p 485–488CrossRef
26.
go back to reference S.Y. Kim, Y.K. Kim et al., Determination of Ideal Mg–35Zn–xCa Alloy Depending on Ca Concentration for Biomaterials, J. Alloys Compd., 2018, 766, p 994–1002CrossRef S.Y. Kim, Y.K. Kim et al., Determination of Ideal Mg–35Zn–xCa Alloy Depending on Ca Concentration for Biomaterials, J. Alloys Compd., 2018, 766, p 994–1002CrossRef
27.
go back to reference T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915CrossRef
28.
go back to reference G. Levi et al., Solidification, Solution Treatment and Age Hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn Alloy, Acta Mater., 2006, 54(2), p 523–530CrossRef G. Levi et al., Solidification, Solution Treatment and Age Hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn Alloy, Acta Mater., 2006, 54(2), p 523–530CrossRef
29.
go back to reference Y. Lu et al., Effects of Secondary Phase and Grain Size on the Corrosion of Biodegradable Mg–Zn–Ca Alloys, Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 48, p 480–486CrossRef Y. Lu et al., Effects of Secondary Phase and Grain Size on the Corrosion of Biodegradable Mg–Zn–Ca Alloys, Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 48, p 480–486CrossRef
30.
go back to reference Y. Zhang, J. Li, and J. Li, Effects of Calcium Addition on Phase Characteristics and Corrosion Behaviors of Mg–2Zn–0.2Mn–xCa in Simulated Body Fluid, J. Alloys Compd., 2017, 728, p 37–46CrossRef Y. Zhang, J. Li, and J. Li, Effects of Calcium Addition on Phase Characteristics and Corrosion Behaviors of Mg–2Zn–0.2Mn–xCa in Simulated Body Fluid, J. Alloys Compd., 2017, 728, p 37–46CrossRef
31.
go back to reference Y. Zhang, J. Li, and J. Li, Effects of Microstructure Transformation on Mechanical Properties, Corrosion Behaviors of Mg–Zn–Mn–Ca Alloys in Simulated Body Fluid, J. Mech. Behav. Biomed. Mater., 2018, 80, p 246–257CrossRef Y. Zhang, J. Li, and J. Li, Effects of Microstructure Transformation on Mechanical Properties, Corrosion Behaviors of Mg–Zn–Mn–Ca Alloys in Simulated Body Fluid, J. Mech. Behav. Biomed. Mater., 2018, 80, p 246–257CrossRef
32.
go back to reference P. Makkar et al., In Vitro and In Vivo Assessment of Biomedical Mg–Ca Alloys for Bone Implant Applications, J. Appl. Biomater. Fundam. Mater., 2018, 16(3), p 126–136 P. Makkar et al., In Vitro and In Vivo Assessment of Biomedical Mg–Ca Alloys for Bone Implant Applications, J. Appl. Biomater. Fundam. Mater., 2018, 16(3), p 126–136
33.
go back to reference H.R. Bakhsheshi-Rad et al., Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg–Ca–Zn and Mg–Ca–Zn–Bi Alloys, J. Mater. Eng. Perform., 2017, 26(2), p 653–666CrossRef H.R. Bakhsheshi-Rad et al., Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg–Ca–Zn and Mg–Ca–Zn–Bi Alloys, J. Mater. Eng. Perform., 2017, 26(2), p 653–666CrossRef
34.
go back to reference Y.Z. Du et al., Microstructures and Mechanical Properties of as-Cast and as-Extruded Mg–4.50Zn–1.13Ca (wt%) Alloys, Mater. Sci. Eng. A, 2013, 576(6), p 6–13CrossRef Y.Z. Du et al., Microstructures and Mechanical Properties of as-Cast and as-Extruded Mg–4.50Zn–1.13Ca (wt%) Alloys, Mater. Sci. Eng. A, 2013, 576(6), p 6–13CrossRef
35.
go back to reference H.R. Bakhsheshi-Rad et al., Mechanical and Bio-corrosion Properties of Quaternary Mg–Ca–Mn–Zn Alloys Compared with Binary Mg–Ca Alloys, Mater. Des., 2014, 53(1), p 283–292CrossRef H.R. Bakhsheshi-Rad et al., Mechanical and Bio-corrosion Properties of Quaternary Mg–Ca–Mn–Zn Alloys Compared with Binary Mg–Ca Alloys, Mater. Des., 2014, 53(1), p 283–292CrossRef
Metadata
Title
Effects of the Addition of Micro-amounts of Calcium on the Corrosion Resistance of Mg-0.1Mn-1.0Zn-xCa Biomaterials
Authors
Jin Wang
Jing-Yuan Li
Yuan Zhang
Wei-Ming Yu
Publication date
05-03-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03958-8

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partners