Skip to main content
Top
Published in:

28-12-2023

Effects of the Rolling Temperature on the Microstructure Uniformities and Mechanical Properties of Large 2219 Al–Cu Alloy Rings

Authors: Wanfu Guo, Dian Chen, Youping Yi, Jinhua Ruan, Changming Liu

Published in: Metals and Materials International | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure uniformities and mechanical properties of the 2219 Al–Cu alloy ring should be further improved. By whole-process analysis and partial quantitative analysis, this paper studies the microstructure evolution and its influence on the mechanical properties of the 2219 Al–Cu alloy rings undergoing rolling deformation with different deformation temperatures. The results indicate that, when the rolling temperatures are from hot condition to warm condition, the increase of the sub-grain amount leads to more grain refinement after heat treatment; the elongation values clearly increase. The single Goss texture with high volume fraction is changed to be more varieties after heat treatment, having no significant effect on transverse and normal strengths for each sample. The Al2Cu phases became more dispersed and fragmented, leading to more dissolve, which results in denser precipitates; the yield strengths gradually increase. In addition, the comprehensive properties of the sample on the border are slightly stronger than those on the core, especially for the warm rolling samples.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)CrossRef
2.
go back to reference D.K. Zhang, G.Q. Wang, A.P. Wu, Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints. J. Alloys Compd. 777, 1044–1053 (2019)CrossRef D.K. Zhang, G.Q. Wang, A.P. Wu, Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints. J. Alloys Compd. 777, 1044–1053 (2019)CrossRef
3.
go back to reference Z.L. Ni, H. Zhao, P. Mi, F.X. Ye, Microstructure and mechanical performances of ultrasonic spot welded Al/Cu joints with Al 2219 alloy particle interlayer. Mater. Des. 9, 779–786 (2016)CrossRef Z.L. Ni, H. Zhao, P. Mi, F.X. Ye, Microstructure and mechanical performances of ultrasonic spot welded Al/Cu joints with Al 2219 alloy particle interlayer. Mater. Des. 9, 779–786 (2016)CrossRef
4.
go back to reference B. Singh, P. Singhal, K.K. Saxena, Influences of latent heat on temperature field, weld bead dimensions and melting efficiency during welding simulation. Met. Mater. Int. 27, 2848–2866 (2021)CrossRef B. Singh, P. Singhal, K.K. Saxena, Influences of latent heat on temperature field, weld bead dimensions and melting efficiency during welding simulation. Met. Mater. Int. 27, 2848–2866 (2021)CrossRef
5.
go back to reference K.K. Saxena, V. Pancholi, Zr–Nb alloys and its hot deformation analysis approaches. Met. Mater. Int. 27, 2106–2133 (2021)CrossRef K.K. Saxena, V. Pancholi, Zr–Nb alloys and its hot deformation analysis approaches. Met. Mater. Int. 27, 2106–2133 (2021)CrossRef
6.
go back to reference K.K. Saxena, V. Pancholi, S.K. Jha, G.P. Chaudhari, D. Srivastava, G.K. Dey, A novel approach to understand the deformation behavior in two phase region using processing map. J. Alloys Compd. 5(706), 511–519 (2017)CrossRef K.K. Saxena, V. Pancholi, S.K. Jha, G.P. Chaudhari, D. Srivastava, G.K. Dey, A novel approach to understand the deformation behavior in two phase region using processing map. J. Alloys Compd. 5(706), 511–519 (2017)CrossRef
7.
go back to reference G. Yang, X.J. Xu, G.J. Hao, Y.W. Zhai, H.Z. Wang, Microstructure evolution, deformation behavior and processing performance of TNM TiAl alloy. J. Mater. Sci. 58, 5530–5551 (2023)CrossRef G. Yang, X.J. Xu, G.J. Hao, Y.W. Zhai, H.Z. Wang, Microstructure evolution, deformation behavior and processing performance of TNM TiAl alloy. J. Mater. Sci. 58, 5530–5551 (2023)CrossRef
8.
go back to reference K.K. Saxena, S. Sonkar, V. Pancholi, G.P. Chaudhari, D. Srivastava, G.K. Dey, S.K. Jha, N. Saibaba, Hot deformation behavior of Zr-2.5 Nb alloy: a comparative study using different materials models. J. Alloys Compd. 662, 94–101 (2016)CrossRef K.K. Saxena, S. Sonkar, V. Pancholi, G.P. Chaudhari, D. Srivastava, G.K. Dey, S.K. Jha, N. Saibaba, Hot deformation behavior of Zr-2.5 Nb alloy: a comparative study using different materials models. J. Alloys Compd. 662, 94–101 (2016)CrossRef
9.
go back to reference X. Zeng, X.G. Fan, H.W. Li, M. Zhan, S.H. Li, Grain morphology related microstructural developments in bulk deformation of 2219 aluminum alloy sheet at elevated temperature. Mater. Sci. Eng. A 760, 328–338 (2019)CrossRef X. Zeng, X.G. Fan, H.W. Li, M. Zhan, S.H. Li, Grain morphology related microstructural developments in bulk deformation of 2219 aluminum alloy sheet at elevated temperature. Mater. Sci. Eng. A 760, 328–338 (2019)CrossRef
10.
go back to reference F. Dong, Y.P. Yi, S.Q. Huang, Influence of cryogenic deformation on second-phase particles, grain structure, and mechanical properties of Al–Cu–Mn alloy. J. Alloys Compd. 827, 154300 (2020)CrossRef F. Dong, Y.P. Yi, S.Q. Huang, Influence of cryogenic deformation on second-phase particles, grain structure, and mechanical properties of Al–Cu–Mn alloy. J. Alloys Compd. 827, 154300 (2020)CrossRef
11.
go back to reference S.V.S. Narayana, A. Murty, P.R. Sarkar, P.V. Narayanan, J.M. Venkitakrishnan, Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219. Mater. Sci. Eng. A 677, 41–49 (2016)CrossRef S.V.S. Narayana, A. Murty, P.R. Sarkar, P.V. Narayanan, J.M. Venkitakrishnan, Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219. Mater. Sci. Eng. A 677, 41–49 (2016)CrossRef
12.
go back to reference H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)CrossRef
13.
go back to reference Y.L. Lu, J. Wang, X.C. Li, Y. Chen, Effect of pre-deformation on the microstructures and properties of 2219 aluminum alloy during aging treatment. J. Alloys Compd. 699, 1140–1145 (2017)CrossRef Y.L. Lu, J. Wang, X.C. Li, Y. Chen, Effect of pre-deformation on the microstructures and properties of 2219 aluminum alloy during aging treatment. J. Alloys Compd. 699, 1140–1145 (2017)CrossRef
14.
go back to reference W.F. Guo, Y.P. Yi, S.Q. Huang, Effects of deformation temperature on the evolution of second-phase and mechanical properties of large 2219 Al–Cu alloy rings. Mater. Charact. 160, 110094 (2020)CrossRef W.F. Guo, Y.P. Yi, S.Q. Huang, Effects of deformation temperature on the evolution of second-phase and mechanical properties of large 2219 Al–Cu alloy rings. Mater. Charact. 160, 110094 (2020)CrossRef
15.
go back to reference R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)CrossRef R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)CrossRef
16.
go back to reference W.F. Guo, Y.P. Yi, S.Q. Huang, H.L. He, J. Fang, Effects of warm rolling deformation on the microstructure and ductility of large 2219 Al–Cu alloy rings. Met. Mater. Int. 26, 56–68 (2020)CrossRef W.F. Guo, Y.P. Yi, S.Q. Huang, H.L. He, J. Fang, Effects of warm rolling deformation on the microstructure and ductility of large 2219 Al–Cu alloy rings. Met. Mater. Int. 26, 56–68 (2020)CrossRef
17.
go back to reference M. Lu, H. Wang, X. Song, F.H. Sun, Effect of doping level on residual stress, coating-substrate adhesion and wear resistance of boron-doped diamond coated tools. J. Mnuf. Process. 88, 145–156 (2023)CrossRef M. Lu, H. Wang, X. Song, F.H. Sun, Effect of doping level on residual stress, coating-substrate adhesion and wear resistance of boron-doped diamond coated tools. J. Mnuf. Process. 88, 145–156 (2023)CrossRef
18.
go back to reference A. Ghosh, K. Das, A.R. Eivani, Hossein Mohammadi2 ·Development of mechanical properties and microstructure for Al–Zn–Mg–Cu alloys through ECAP after optimizing the outer corner angles through FE modeling. Arch. Civ. Mech. Eng. 23, 78 (2020)CrossRef A. Ghosh, K. Das, A.R. Eivani, Hossein Mohammadi2 ·Development of mechanical properties and microstructure for Al–Zn–Mg–Cu alloys through ECAP after optimizing the outer corner angles through FE modeling. Arch. Civ. Mech. Eng. 23, 78 (2020)CrossRef
19.
go back to reference B. Kumar, K.K. Saxena, S.R. Dey, V. Pancholi, A. Bhattacharjee, Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600). J. Alloys Compd. 691, 906–913 (2017)CrossRef B. Kumar, K.K. Saxena, S.R. Dey, V. Pancholi, A. Bhattacharjee, Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600). J. Alloys Compd. 691, 906–913 (2017)CrossRef
20.
go back to reference J.J. Zhang, H.L. He, Y.P. Yi, S.Q. Huang, X.C. Mao, Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation. Mater. Sci. Eng. A 804, 140650 (2021)CrossRef J.J. Zhang, H.L. He, Y.P. Yi, S.Q. Huang, X.C. Mao, Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation. Mater. Sci. Eng. A 804, 140650 (2021)CrossRef
21.
go back to reference A. Ghosh, A. Roy, A. Ghosh, M. Ghosh, Influence of temperature on microstructure, crystallographic texture and mechanical properties of EN AW 6016 alloy during plane strain compression. Mater. Today Commun. 26, 101808 (2021)CrossRef A. Ghosh, A. Roy, A. Ghosh, M. Ghosh, Influence of temperature on microstructure, crystallographic texture and mechanical properties of EN AW 6016 alloy during plane strain compression. Mater. Today Commun. 26, 101808 (2021)CrossRef
22.
go back to reference A. Ghosh, M. Ghosh, K. Gudimetla, R. Kalsar, L.A. Kestens, C.S. Kondaveeti, B. Singh Pugazhendhi, B. Ravisankar, Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties. Arch. Civil Mech. Eng. 20(1), 7 (2020)CrossRef A. Ghosh, M. Ghosh, K. Gudimetla, R. Kalsar, L.A. Kestens, C.S. Kondaveeti, B. Singh Pugazhendhi, B. Ravisankar, Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties. Arch. Civil Mech. Eng. 20(1), 7 (2020)CrossRef
23.
go back to reference A. Ghosh, A. Elasheri, N. Parson, X.-G. Chen, Microstructure and texture evolution during high-temperature compression of Al-Mg-Si-Zr-Mn alloy. Mater. Charact. 205, 113312 (2023)CrossRef A. Ghosh, A. Elasheri, N. Parson, X.-G. Chen, Microstructure and texture evolution during high-temperature compression of Al-Mg-Si-Zr-Mn alloy. Mater. Charact. 205, 113312 (2023)CrossRef
24.
go back to reference X.C. Mao, H.L. He, Y.P. Yi, Second phase particles and mechanical properties of 2219 aluminum alloys processed by an improved ring manufacturing process. Mater. Sci. Eng. A 781, 139226 (2020)CrossRef X.C. Mao, H.L. He, Y.P. Yi, Second phase particles and mechanical properties of 2219 aluminum alloys processed by an improved ring manufacturing process. Mater. Sci. Eng. A 781, 139226 (2020)CrossRef
25.
go back to reference J.R. Zuo, L.G. Hou, J.T. Shi, H. Cui, L.Z. Zhuang, J.S. Zhang, The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy. Mater. Sci. Eng. A 702, 42–52 (2017)CrossRef J.R. Zuo, L.G. Hou, J.T. Shi, H. Cui, L.Z. Zhuang, J.S. Zhang, The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy. Mater. Sci. Eng. A 702, 42–52 (2017)CrossRef
26.
go back to reference P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)CrossRef P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)CrossRef
27.
go back to reference A. Ghosh, M. Ghosh, R. Kalsar, Influence of homogenisation time on evolution of eutectic phases, dispersoid behaviour and crystallographic texture for Al–Zn–Mg–Cu–Ag alloy. J. Alloys Compd. 802, 276–289 (2019)CrossRef A. Ghosh, M. Ghosh, R. Kalsar, Influence of homogenisation time on evolution of eutectic phases, dispersoid behaviour and crystallographic texture for Al–Zn–Mg–Cu–Ag alloy. J. Alloys Compd. 802, 276–289 (2019)CrossRef
28.
go back to reference A. Ghosh, M. Ghosh, Microstructure and texture development of 7075 alloy during homogenisation. Philos. Mag. 98(16), 1470–1490 (2018)CrossRef A. Ghosh, M. Ghosh, Microstructure and texture development of 7075 alloy during homogenisation. Philos. Mag. 98(16), 1470–1490 (2018)CrossRef
29.
go back to reference S. Ringeval, D. Piot, C. Desrayaud, J.H. Driver, Texture and microtexture development in an Al-3Mg-Sc (Zr) alloy deformed by triaxial forging. Acta Mater. 54, 3095–3105 (2006)CrossRef S. Ringeval, D. Piot, C. Desrayaud, J.H. Driver, Texture and microtexture development in an Al-3Mg-Sc (Zr) alloy deformed by triaxial forging. Acta Mater. 54, 3095–3105 (2006)CrossRef
30.
go back to reference A. Ghosh, M. Ghosh, A.H. Seikh, N.H. Alharthi, Phase transformation and dispersoid evolution for Al-Zn-Mg-Cu alloy containing Sn during homogenization. J. Mater. Res. Technol. 9(1), 1–12 (2020)CrossRef A. Ghosh, M. Ghosh, A.H. Seikh, N.H. Alharthi, Phase transformation and dispersoid evolution for Al-Zn-Mg-Cu alloy containing Sn during homogenization. J. Mater. Res. Technol. 9(1), 1–12 (2020)CrossRef
31.
go back to reference M. Suresh, A. Sharma, A.M. More, R. Kalsar, A. Bisht, N. Nayan, S. Suwas, Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al–Cu-Li alloy AA2195. J. Alloys Compd. 785, 972–983 (2019)CrossRef M. Suresh, A. Sharma, A.M. More, R. Kalsar, A. Bisht, N. Nayan, S. Suwas, Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al–Cu-Li alloy AA2195. J. Alloys Compd. 785, 972–983 (2019)CrossRef
32.
go back to reference S. Esmaeilia, D.J. Lloydb, W.J. Poolea, A yield strength model for the Al-Mg-Si- Cu alloy AA6111. Acta Mater. 51, 2243–2257 (2003)CrossRef S. Esmaeilia, D.J. Lloydb, W.J. Poolea, A yield strength model for the Al-Mg-Si- Cu alloy AA6111. Acta Mater. 51, 2243–2257 (2003)CrossRef
33.
go back to reference S. Wang, Effect of solution treatment and cold Rolling deformation on microstructure and properties of Al–Cu-Mg alloy, Ph.D. Thesis, Harbin University of Science and Technology (2022) S. Wang, Effect of solution treatment and cold Rolling deformation on microstructure and properties of Al–Cu-Mg alloy, Ph.D. Thesis, Harbin University of Science and Technology (2022)
34.
go back to reference W.M. Mao. Principle of Material Texture Analysis and Detection Technology (Metallurgical Industry Press, Beijing, 2008), pp. 37–52 W.M. Mao. Principle of Material Texture Analysis and Detection Technology (Metallurgical Industry Press, Beijing, 2008), pp. 37–52
35.
go back to reference P. Sherstnev, Prediction of the yield strength during a heat treatment of deformed Al-Mg-Si alloys. Mater. Sci. Forum. 690, 11–14 (2011) P. Sherstnev, Prediction of the yield strength during a heat treatment of deformed Al-Mg-Si alloys. Mater. Sci. Forum. 690, 11–14 (2011)
36.
go back to reference W. Gu, J.Y. Li, Y.D. Wang, Effect of grain size and taylor factor on the transverse mechanical properties of 7050 aluminium alloy extrusion profile after over-aging. Acta. Metall. Sin-Engl. 52(1), 51–59 (2016) W. Gu, J.Y. Li, Y.D. Wang, Effect of grain size and taylor factor on the transverse mechanical properties of 7050 aluminium alloy extrusion profile after over-aging. Acta. Metall. Sin-Engl. 52(1), 51–59 (2016)
37.
go back to reference P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRef P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRef
38.
go back to reference J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007) J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007)
39.
go back to reference H. Li, L.H. Zhan, M.H. Huang, X. Zhao, unified constitutive model for multiphase precipitation and multi-stage creep ageing behavior of Al−Li−S4 alloy. Trans. Nonferrous Met. Soc. China 31, 1217–1234 (2021)CrossRef H. Li, L.H. Zhan, M.H. Huang, X. Zhao, unified constitutive model for multiphase precipitation and multi-stage creep ageing behavior of Al−Li−S4 alloy. Trans. Nonferrous Met. Soc. China 31, 1217–1234 (2021)CrossRef
40.
go back to reference M. Ghosh, A. Miroux, L.A.I. Kestens, Experimental study and modelling of the role of solutes, precipitates and temperature on the work-hardening of AA6xxx aluminium alloys. Mater. Sci. Eng. A 805, 140615 (2021)CrossRef M. Ghosh, A. Miroux, L.A.I. Kestens, Experimental study and modelling of the role of solutes, precipitates and temperature on the work-hardening of AA6xxx aluminium alloys. Mater. Sci. Eng. A 805, 140615 (2021)CrossRef
41.
go back to reference N. Hansen, Hall-Petch relation and boundary strengthening. Scripta Mater. 51, 801–806 (2004)CrossRef N. Hansen, Hall-Petch relation and boundary strengthening. Scripta Mater. 51, 801–806 (2004)CrossRef
42.
go back to reference M. Meyers, K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, USA, 2009) M. Meyers, K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, USA, 2009)
43.
go back to reference A.W. Zhu, E.A. Starke, Strengthening effect of unshearable particles of finite size: a computer experimental study. Acta Mater. 47(11), 3269 (1999)CrossRef A.W. Zhu, E.A. Starke, Strengthening effect of unshearable particles of finite size: a computer experimental study. Acta Mater. 47(11), 3269 (1999)CrossRef
44.
go back to reference S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50(4), 193–215 (2005)CrossRef S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50(4), 193–215 (2005)CrossRef
45.
go back to reference D.L. Medlin, N. Yang, C.D. Spataru, Unraveling the dislocation core structure at a van der Waals gap in bismuth telluride. Nat. Commun. 10, 1820 (2019)PubMedPubMedCentralCrossRef D.L. Medlin, N. Yang, C.D. Spataru, Unraveling the dislocation core structure at a van der Waals gap in bismuth telluride. Nat. Commun. 10, 1820 (2019)PubMedPubMedCentralCrossRef
46.
go back to reference R.R. Ambriz, D. Jaramillo, Mechanical behavior of precipitation hardened aluminum alloys welds, in Light Metal Alloys Applications, ed. by W.A. Monteiro (IntechOpen, London, 2014) R.R. Ambriz, D. Jaramillo, Mechanical behavior of precipitation hardened aluminum alloys welds, in Light Metal Alloys Applications, ed. by W.A. Monteiro (IntechOpen, London, 2014)
47.
go back to reference G. Fribourg, Y. Bréchet, A. Deschamps, A. Simar, Micorstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminum alloy. Acta Mater. 59(9), 3621–3635 (2011)CrossRef G. Fribourg, Y. Bréchet, A. Deschamps, A. Simar, Micorstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminum alloy. Acta Mater. 59(9), 3621–3635 (2011)CrossRef
48.
go back to reference Q.L. Zhao, B. Holmedal, Modelling work hardening of aluminium alloys containing dispersoids Philos. Mag. 93(23), 3142–3153 (2013) Q.L. Zhao, B. Holmedal, Modelling work hardening of aluminium alloys containing dispersoids Philos. Mag. 93(23), 3142–3153 (2013)
49.
go back to reference P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)CrossRef P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)CrossRef
50.
go back to reference M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491 M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491
51.
go back to reference Q.P. Zhong, Z.H. Zhao, The Study of Fracture (Higher Education Press, Beijing, 2006) Q.P. Zhong, Z.H. Zhao, The Study of Fracture (Higher Education Press, Beijing, 2006)
52.
go back to reference W.F. Guo, Y.P. Yi, S.Q. Huang, X.C. Mao, J. Fang, Manufacturing large 2219 Al–Cu alloy rings by a cold rolling process Mater. Manuf. Process. 35, 291–302 (2020)CrossRef W.F. Guo, Y.P. Yi, S.Q. Huang, X.C. Mao, J. Fang, Manufacturing large 2219 Al–Cu alloy rings by a cold rolling process Mater. Manuf. Process. 35, 291–302 (2020)CrossRef
53.
go back to reference T. Zhou, M. Yi, Microscopic cracking simulation of nanocomposite ceramic tool materials under the consideration of residual stress. Int. J. Adv. Manuf. Technol. 94, 3485–3502 (2018)CrossRef T. Zhou, M. Yi, Microscopic cracking simulation of nanocomposite ceramic tool materials under the consideration of residual stress. Int. J. Adv. Manuf. Technol. 94, 3485–3502 (2018)CrossRef
54.
go back to reference W.F. Guo, H.L. He, Y.P. Yi, S.Q. Huang, X.C. Mao, J. Fang, Effects of axial cold-compression on microstructure uniformity and mechanical property enhancement of large 2219 Al–Cu alloy rings. Mater. Sci. Eng. A 798, 140233 (2020)CrossRef W.F. Guo, H.L. He, Y.P. Yi, S.Q. Huang, X.C. Mao, J. Fang, Effects of axial cold-compression on microstructure uniformity and mechanical property enhancement of large 2219 Al–Cu alloy rings. Mater. Sci. Eng. A 798, 140233 (2020)CrossRef
55.
go back to reference L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34, 241–248 (1998)CrossRef L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34, 241–248 (1998)CrossRef
56.
go back to reference G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)CrossRef G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)CrossRef
Metadata
Title
Effects of the Rolling Temperature on the Microstructure Uniformities and Mechanical Properties of Large 2219 Al–Cu Alloy Rings
Authors
Wanfu Guo
Dian Chen
Youping Yi
Jinhua Ruan
Changming Liu
Publication date
28-12-2023
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 5/2024
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-023-01583-8

Other articles of this Issue 5/2024

Metals and Materials International 5/2024 Go to the issue

Premium Partners