Skip to main content
Top

2024 | OriginalPaper | Chapter

Efficient and Reliable Surface Defect Detection in Industrial Products Using Morphology-Based Techniques

Author : Ertugrul Bayraktar

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the application of morphology-based image processing techniques for detecting surface defects in industrial products, addressing the limitations of traditional visual inspection methods and deep learning-based approaches. It presents a novel technique that accurately detects small defects, even in large images, without requiring extensive labeled data. The methodology combines various image processing algorithms, such as dilation, closing, median filtering, and gradient detection, to enhance and segment images effectively. The proposed technique is particularly valuable for industries where high-precision and accurate detection of defects is crucial, offering a practical and efficient solution for real-time quality control applications. The chapter also compares the performance of classical methods with modern deep learning algorithms, demonstrating the superiority of classical image processing techniques in scenarios where labeled data is scarce. Overall, the chapter provides a comprehensive overview of the potential of classical image processing methods in industrial defect detection, highlighting their advantages and practical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, Y., Guo, L., Gao, H., You, Z., Ye, Y., Zhang, B.: Machine vision based condition monitoring ve fault diagnosis of machine tools using information from machined surface texture: A review. Mech. Syst. ve Sig. Proc. 164, 108068 (2022)CrossRef Liu, Y., Guo, L., Gao, H., You, Z., Ye, Y., Zhang, B.: Machine vision based condition monitoring ve fault diagnosis of machine tools using information from machined surface texture: A review. Mech. Syst. ve Sig. Proc. 164, 108068 (2022)CrossRef
2.
go back to reference Wieler, M., Hahn, T.: Weakly supervised learning for industrial optical inspection. In DAGM symposium in (2007) Wieler, M., Hahn, T.: Weakly supervised learning for industrial optical inspection. In DAGM symposium in (2007)
3.
go back to reference Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013)CrossRef Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013)CrossRef
5.
go back to reference Dong, H., Song, K., Wang, Q., Yan, Y., Jiang, P.: Deep metric learning-based for multi-target few-shot pavement distress classification. IEEE Trans. Industr. Inf. 18(3), 1801–1810 (2021)CrossRef Dong, H., Song, K., Wang, Q., Yan, Y., Jiang, P.: Deep metric learning-based for multi-target few-shot pavement distress classification. IEEE Trans. Industr. Inf. 18(3), 1801–1810 (2021)CrossRef
6.
go back to reference Zhu, Q., Dinh, T.H., Phung, M.D., Ha, Q.P.: Hierarchical convolutional neural network with feature preservation and autotuned thresholding for crack detection. IEEE Access 9, 60201–60214 (2021)CrossRef Zhu, Q., Dinh, T.H., Phung, M.D., Ha, Q.P.: Hierarchical convolutional neural network with feature preservation and autotuned thresholding for crack detection. IEEE Access 9, 60201–60214 (2021)CrossRef
7.
go back to reference Zhang, D., Song, K., Wang, Q., He, Y., Wen, X., Yan, Y.: Two deep learning networks for rail surface defect inspection of limited samples with line-level label. IEEE Trans. Industr. Inf. 17(10), 6731–6741 (2020)CrossRef Zhang, D., Song, K., Wang, Q., He, Y., Wen, X., Yan, Y.: Two deep learning networks for rail surface defect inspection of limited samples with line-level label. IEEE Trans. Industr. Inf. 17(10), 6731–6741 (2020)CrossRef
8.
go back to reference Schlagenhauf, T., Lvewehr, M.: Industrial machine tool component surface defect dataset. Data Brief. 39, 107643 (2021)CrossRef Schlagenhauf, T., Lvewehr, M.: Industrial machine tool component surface defect dataset. Data Brief. 39, 107643 (2021)CrossRef
10.
go back to reference Saeed, N., King, N., Said, Z., Omar, M.A.: Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning. Infrared Phys. Technol. 102, 103048 (2019)CrossRef Saeed, N., King, N., Said, Z., Omar, M.A.: Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning. Infrared Phys. Technol. 102, 103048 (2019)CrossRef
11.
12.
go back to reference Ng, H.F.: Automatic thresholding for defect detection. Pattern Recogn. Lett. 27(14), 1644–1649 (2006)CrossRef Ng, H.F.: Automatic thresholding for defect detection. Pattern Recogn. Lett. 27(14), 1644–1649 (2006)CrossRef
13.
go back to reference Win, M., Bushroa, A.R., Hassan, M.A., Hilman, N.M., Ide-Ektessabi, A.: A contrast adjustment thresholding method for surface defect detection based on mesoscopy. IEEE Trans. Industr. Inf. 11(3), 642–649 (2015)CrossRef Win, M., Bushroa, A.R., Hassan, M.A., Hilman, N.M., Ide-Ektessabi, A.: A contrast adjustment thresholding method for surface defect detection based on mesoscopy. IEEE Trans. Industr. Inf. 11(3), 642–649 (2015)CrossRef
14.
go back to reference Malge, P.S., Nadaf, R.S.: PCB defect detection, classification and localization using mathematical morphology and image processing tools. Int. J. Comput. Appl. 87(9) 2014 Malge, P.S., Nadaf, R.S.: PCB defect detection, classification and localization using mathematical morphology and image processing tools. Int. J. Comput. Appl. 87(9) 2014
15.
go back to reference Mak, K.L., Peng, P., Yiu, K.F.C.: Fabric defect detection using morphological filters. Image Vis. Comput. 27(10), 1585–1592 (2009)CrossRef Mak, K.L., Peng, P., Yiu, K.F.C.: Fabric defect detection using morphological filters. Image Vis. Comput. 27(10), 1585–1592 (2009)CrossRef
16.
go back to reference Han, Y., Shi, P.: An adaptive level-selecting wavelet transform for texture defect detection. Image Vis. Comput. 25(8), 1239–1248 (2007)CrossRef Han, Y., Shi, P.: An adaptive level-selecting wavelet transform for texture defect detection. Image Vis. Comput. 25(8), 1239–1248 (2007)CrossRef
17.
go back to reference Li, W.C., Tsai, D.M.: Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recogn. 45(2), 742–756 (2012)CrossRef Li, W.C., Tsai, D.M.: Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recogn. 45(2), 742–756 (2012)CrossRef
18.
go back to reference Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)CrossRef Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)CrossRef
19.
go back to reference Li, B., Zhang, P.L., Wang, Z.J., Mi, S.S., Zhang, Y.T.: Gear fault detection using multi-scale morphological filters. Measurement 44(10), 2078–2089 (2011)CrossRef Li, B., Zhang, P.L., Wang, Z.J., Mi, S.S., Zhang, Y.T.: Gear fault detection using multi-scale morphological filters. Measurement 44(10), 2078–2089 (2011)CrossRef
20.
go back to reference Melotti, D., Heimbach, K., Rodríguez-Sánchez, A., Strisciuglio, N., Azzopardi, G.: A robust contour detection operator with combined push-pull inhibition and surround suppression. Inf. Sci. 524, 229–240 (2020)MathSciNetCrossRef Melotti, D., Heimbach, K., Rodríguez-Sánchez, A., Strisciuglio, N., Azzopardi, G.: A robust contour detection operator with combined push-pull inhibition and surround suppression. Inf. Sci. 524, 229–240 (2020)MathSciNetCrossRef
21.
go back to reference Zhang, Y., Li, T., Li, Q.: Defect detection for tire laser shearography image using curvelet transform based edge detector. Opt. Laser Technol. 47, 64–71 (2013)CrossRef Zhang, Y., Li, T., Li, Q.: Defect detection for tire laser shearography image using curvelet transform based edge detector. Opt. Laser Technol. 47, 64–71 (2013)CrossRef
22.
go back to reference Bayraktar, E., Tosun, B., Altintas, B., Celebi, N.: Combined GANs and classical methods for surface defect detection. In 2022 30th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2022) Bayraktar, E., Tosun, B., Altintas, B., Celebi, N.: Combined GANs and classical methods for surface defect detection. In 2022 30th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2022)
Metadata
Title
Efficient and Reliable Surface Defect Detection in Industrial Products Using Morphology-Based Techniques
Author
Ertugrul Bayraktar
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_9

Premium Partners