Skip to main content
Top

2020 | OriginalPaper | Chapter

Efficient Dispersion on an Anonymous Ring in the Presence of Weak Byzantine Robots

Authors : Anisur Rahaman Molla, Kaushik Mondal, William K. Moses Jr.

Published in: Algorithms for Sensor Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problem of dispersion of mobile robots on a graph asks that n robots initially placed arbitrarily on the nodes of an n-node anonymous graph, autonomously move to reach a final configuration where exactly each node has at most one robot on it. This problem has been relatively well-studied when robots are non-faulty. In this paper, we introduce the notion of Byzantine faults to this problem, i.e., we formalize the problem of dispersion in the presence of up to f Byzantine robots. We then study the problem on a ring while simultaneously optimizing the time complexity of algorithms and the memory requirement per robot. Specifically, we design deterministic algorithms that attempt to match the time lower bound (\(\varOmega (n)\) rounds) and memory lower bound (\(\varOmega (\log n)\) bits per robot).
Our main result is a deterministic algorithm that is both time and memory optimal, i.e., O(n) rounds and \(O(\log n)\) bits of memory required per robot, subject to certain constraints. We subsequently provide results that require less assumptions but are either only time or memory optimal but not both. We also provide a primitive that takes robots initially gathered at a node of the ring and disperses them in a time and memory optimal manner without additional assumptions required .

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
There are mainly two types of faults–one is “crash fault” which means that once a robot crashes, it is dead and will not be active again thereafter; another one is “Byzantine fault” which means that a robot is alive throughout and may behave maliciously. Note that the Byzantine fault subsumes the crash fault.
 
2
In the algorithms, we mention a robot resets its sense of direction, i.e., it resets its notion of clockwise and counter-clockwise. That refers to the robot performing this check again and redefining clockwise and counter-clockwise accordingly.
 
3
Note that it is not necessary for a robot to know the value of n in order to maintain a counter using \(\log n\) bits of memory given that the robot’s total memory is \(c \log n\) bits of memory, where c is a sufficiently large constant.
 
4
Notice that we say that other co-located robots are to follow \(R_1\), instead of just staying put. This is to ensure that all robots initially co-located with \(R_1\) continue to stay with \(R_1\), even if \(R_1\) is a Byzantine robot and moves around during the \(n+1\) rounds.
 
5
Possibly some Byzantine robots may also be gathered as well, but the presence of these robots does not cause problems as the subsequent procedure, Rooted-Ring-Dispersion is correct even in the presence of \(n-1\) Byzantine robots.
 
6
This could happen at the beginning of the stage, if the two robots are co-located on the same node.
 
7
If r terminates prior to the end of round n, it becomes invisible to other robots. Thus, there is the risk of another non-Byzantine robot settling at the same node as r if r terminates early.
 
Literature
1.
go back to reference Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRef Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRef
2.
3.
go back to reference Augustine, J., Moses, Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. CoRR abs/1707.05629 ([v4] 2018 (a preliminary version appeared in ICDCN’18)) Augustine, J., Moses, Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. CoRR abs/1707.05629 ([v4] 2018 (a preliminary version appeared in ICDCN’18))
4.
go back to reference Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers. In: DISC, pp. 423–435 (2009) Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers. In: DISC, pp. 423–435 (2009)
5.
go back to reference Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009) Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009)
7.
go back to reference Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018, pp. 147:1–147:15 (2018) Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018, pp. 147:1–147:15 (2018)
9.
go back to reference Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRef Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRef
10.
go back to reference Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 57–72 (2002) Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 57–72 (2002)
11.
go back to reference Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008) Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008)
12.
go back to reference Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity, (SIROCCO), pp. 79–88 (2004) Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity, (SIROCCO), pp. 79–88 (2004)
13.
go back to reference Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989)CrossRef Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989)CrossRef
15.
go back to reference Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS 109, 54–69 (2013)MATH Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS 109, 54–69 (2013)MATH
16.
go back to reference Das, S., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Comput. Sci. 764, 42–60 (2019)MathSciNetCrossRef Das, S., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Comput. Sci. 764, 42–60 (2019)MathSciNetCrossRef
18.
go back to reference Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011) Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)
19.
go back to reference Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015) Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)
20.
go back to reference Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1:1–1:28 (2014) Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1:1–1:28 (2014)
21.
go back to reference Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)MathSciNetCrossRef Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)MathSciNetCrossRef
22.
go back to reference Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRef Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRef
23.
go back to reference Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN, pp. 218–227 (2019) Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN, pp. 218–227 (2019)
24.
go back to reference Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary graphs. In: ALGOSENSORS (2019) Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary graphs. In: ALGOSENSORS (2019)
25.
go back to reference Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the global communication model. In: ICDCN (2020) Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the global communication model. In: ICDCN (2020)
26.
go back to reference Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In: WALCOM (2020) Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In: WALCOM (2020)
27.
go back to reference Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph exploration. Inf. Process. Lett. 127, 17–20 (2017)MathSciNetCrossRef Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph exploration. Inf. Process. Lett. 127, 17–20 (2017)MathSciNetCrossRef
28.
go back to reference Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and treasure hunt. J. Parallel Distrib. Comput. 83, 159–167 (2015)CrossRef Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and treasure hunt. J. Parallel Distrib. Comput. 83, 159–167 (2015)CrossRef
29.
go back to reference Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: the power of randomness. In: TAMC, pp. 481–500 (2019) Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: the power of randomness. In: TAMC, pp. 481–500 (2019)
30.
go back to reference Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: The 14th International Conference on Network-Based Information Systems (NBiS), pp. 318–324 (2011) Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: The 14th International Conference on Network-Based Information Systems (NBiS), pp. 318–324 (2011)
31.
go back to reference Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237 (2019) Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237 (2019)
32.
go back to reference Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRef Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRef
33.
go back to reference Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016) Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)
34.
go back to reference Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: SPAA, pp. 220–225 (1994) Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: SPAA, pp. 220–225 (1994)
35.
go back to reference Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRef Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRef
Metadata
Title
Efficient Dispersion on an Anonymous Ring in the Presence of Weak Byzantine Robots
Authors
Anisur Rahaman Molla
Kaushik Mondal
William K. Moses Jr.
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-62401-9_11

Premium Partner