Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Efficient Energy Harvesting Systems for Vibration and Wireless Sensor Applications

Authors : Mustafa Doğan, Sıtkı Çağdaş İnam, Ö. Orkun Sürel

Published in: Energy Harvesting and Energy Efficiency

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the first part of the research, we present the design of a vibration-based energy harvesting system. Robotic flexible arm having variable cross-section is investigated to overcome serious problems, e.g. insufficient bandwidth and model inaccuracies. Most of the energy harvesting systems are linear with unimodal characteristics. On the other hand, real vibrations can be modeled as random, multi-modal and time varying systems. Hence, unimodal linear systems can give highly unsatisfactory results under certain circumstances. However, non-linear systems can have multi-modal character with increased performance in real and practical situations. In this work, tapered links are preferred with nonlinear coupling setup to provide sufficient bandwidth and output power requirements for modern applications. Thus, the proposed scheme has been proven by simulated and experimental results successfully. In the second part of the research, we present design and experimental results of an electromagnetic harvester, energy source of which is single-phase household AC power with a nominal voltage of 220 V and a frequency of 50 Hz. In this case, energy harvesting is based on the induced electromotive force (EMF) as a result of the periodic variations of the magnetic field around the AC power cord. In this part, we also discuss basic principles of a wireless sensor network design powered by electromagnetically harvested energy obtained from household alternating current.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shahruz SM (2006) Limits of performance of mechanical band-pass filters used in energy scavenging. J Sound Vib 293(1–2):449–461CrossRef Shahruz SM (2006) Limits of performance of mechanical band-pass filters used in energy scavenging. J Sound Vib 293(1–2):449–461CrossRef
2.
go back to reference Shahruz SM (2006) Design of mechanical band-pass filters with large frequency bands for energy scavenging. Mechatronics 16(9):523–531CrossRef Shahruz SM (2006) Design of mechanical band-pass filters with large frequency bands for energy scavenging. Mechatronics 16(9):523–531CrossRef
3.
go back to reference Shahruz SM (2008) Design of mechanical band-pass filters for energy scavenging: multi-degree-of-freedom models. J Vib Control 14(5):753–768MathSciNetCrossRefMATH Shahruz SM (2008) Design of mechanical band-pass filters for energy scavenging: multi-degree-of-freedom models. J Vib Control 14(5):753–768MathSciNetCrossRefMATH
5.
go back to reference Chennault KAC, Thambi N, Sastry AM (2008) Topical review powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001(33 pp). doi:10.1088/0964-1726/17/4/043001 Chennault KAC, Thambi N, Sastry AM (2008) Topical review powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001(33 pp). doi:10.​1088/​0964-1726/​17/​4/​043001
6.
go back to reference Beeby SP, Tudor MJ, White NM (2006) Review article energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef Beeby SP, Tudor MJ, White NM (2006) Review article energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef
7.
go back to reference Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. Pervasive Comput 1:18–27CrossRef Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. Pervasive Comput 1:18–27CrossRef
10.
go back to reference Luo ZH (1993) Direct strain feedback control of flexible Robot arms: new theoretical and experimental results. IEEE Trans Autom Control 38(11):1610–1622MathSciNetCrossRefMATH Luo ZH (1993) Direct strain feedback control of flexible Robot arms: new theoretical and experimental results. IEEE Trans Autom Control 38(11):1610–1622MathSciNetCrossRefMATH
11.
go back to reference Moallem M, Patel RV, Khorasani K (2000) Optimization of an actuated flexible arm for improved control properties. In: Proceedings of IEEE international conference control application, pp 709–714, Anchorage Moallem M, Patel RV, Khorasani K (2000) Optimization of an actuated flexible arm for improved control properties. In: Proceedings of IEEE international conference control application, pp 709–714, Anchorage
12.
go back to reference Wang FY, Russell JL (1992) Optimum shape construction of flexible manipulators with tip loads. In: Proceedings of the 31st IEEE conference decision and control, Tucson, pp 311–316 Wang FY, Russell JL (1992) Optimum shape construction of flexible manipulators with tip loads. In: Proceedings of the 31st IEEE conference decision and control, Tucson, pp 311–316
14.
go back to reference Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys D Nonlinear Phenom 239(10):640–653CrossRefMATH Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys D Nonlinear Phenom 239(10):640–653CrossRefMATH
16.
go back to reference Sarı I, Balkan T, Külah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19(1):14–27. doi:10.1109/JMEMS.2009.2037245 CrossRef Sarı I, Balkan T, Külah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19(1):14–27. doi:10.​1109/​JMEMS.​2009.​2037245 CrossRef
19.
go back to reference Yeatman, EM (2004) Advances in power sources for wireless sensor nodes. In: Proceedings of international workshop wearable and implantable body sensor networks, pp 20–21 Yeatman, EM (2004) Advances in power sources for wireless sensor nodes. In: Proceedings of international workshop wearable and implantable body sensor networks, pp 20–21
20.
go back to reference Lee V (2012) Energy harvesting for wireless sensor networks. M.S. project in Engineering—Electrical Engineering and Computer Sciences, UC, Berkeley Lee V (2012) Energy harvesting for wireless sensor networks. M.S. project in Engineering—Electrical Engineering and Computer Sciences, UC, Berkeley
21.
go back to reference Erturk A (2009) Electromechanical modeling of piezoelectric energy harvesters. Ph D thesis, Virginia Polytechnic Institute and State University, Blacksburg, November 2009 Erturk A (2009) Electromechanical modeling of piezoelectric energy harvesters. Ph D thesis, Virginia Polytechnic Institute and State University, Blacksburg, November 2009
22.
go back to reference Roundy S, Leland ES, Baker J et al (2005) Improving power output for vibration-based energy scavengers. Pervas Comput 1:28–36CrossRef Roundy S, Leland ES, Baker J et al (2005) Improving power output for vibration-based energy scavengers. Pervas Comput 1:28–36CrossRef
24.
go back to reference Özdemir Ö, Kaya MO (2006) Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. J Sound Vib 289:413–420CrossRefMATH Özdemir Ö, Kaya MO (2006) Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. J Sound Vib 289:413–420CrossRefMATH
25.
go back to reference Abhyankar NS, Hall EK II, Hanagud SV (1993) Chaotic vibrations of beams: numerical solution of partial differential equations. ASME J Appl Mech 60:167–174MathSciNetCrossRefMATH Abhyankar NS, Hall EK II, Hanagud SV (1993) Chaotic vibrations of beams: numerical solution of partial differential equations. ASME J Appl Mech 60:167–174MathSciNetCrossRefMATH
27.
go back to reference Chang K-S et al (2012) Electric field energy harvesting powered wireless sensors for smart grid. J Electr Eng Technol 7(1):75–80CrossRef Chang K-S et al (2012) Electric field energy harvesting powered wireless sensors for smart grid. J Electr Eng Technol 7(1):75–80CrossRef
28.
go back to reference Tsunoda Y et al (2015) A small-size energy-harvesting electric power sensor for implementing existing electrical appliances into HEMS. IEEE Sens J 16(2):457–463MathSciNetCrossRef Tsunoda Y et al (2015) A small-size energy-harvesting electric power sensor for implementing existing electrical appliances into HEMS. IEEE Sens J 16(2):457–463MathSciNetCrossRef
29.
go back to reference Moghe R et al (2014) A low-cost electric field energy harvester for an MV/HV asset-monitoring smart sensor. IEEE Trans Ind Appl 51(2):1828–1836CrossRef Moghe R et al (2014) A low-cost electric field energy harvester for an MV/HV asset-monitoring smart sensor. IEEE Trans Ind Appl 51(2):1828–1836CrossRef
Metadata
Title
Efficient Energy Harvesting Systems for Vibration and Wireless Sensor Applications
Authors
Mustafa Doğan
Sıtkı Çağdaş İnam
Ö. Orkun Sürel
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49875-1_4