Skip to main content
Top
Published in: Soft Computing 11/2018

19-03-2018 | Focus

Efficient extreme learning machine via very sparse random projection

Authors: Chuangquan Chen, Chi-Man Vong, Chi-Man Wong, Weiru Wang, Pak-Kin Wong

Published in: Soft Computing | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extreme learning machine (ELM) is a kind of random projection-based neural networks, whose advantages are fast training speed and high generalization. However, three issues can be improved in ELM: (1) the calculation of output weights takes \(O\left( {L^{2}N} \right) \) time (with N training samples and L hidden nodes), which is relatively slow to train a model for large N and L; (2) the manual tuning of L is tedious, exhaustive and time-consuming; (3) the redundant or irrelevant information in the hidden layer may cause overfitting and may hinder high generalization. Inspired from compressive sensing theory, we propose an efficient ELM via very sparse random projection (VSRP) called VSRP-ELM for training with large N and L. The proposed VSRP-ELM adds a novel compression layer between the hidden layer and output layer, which compresses the dimension of the hidden layer from \(N\times L\) to \(N\times k \,(\hbox {where } k<L)\) under projection with random sparse-Bernoulli matrix. The advantages of VSRP-ELM are (1) faster training time \(O\left( {k^{2}N} \right) , k<L,\) is obtained for large L; (2) the tuning time of L can be significantly reduced by initializing a large L, and then shrunk to k using just a few trials, while maintaining a comparable result of the original model accuracy; (3) higher generalization may be benefited from the cleaning of redundant or irrelevant information through VSRP. From the experimental results, the proposed VSRP-ELM can speed ELM up to 7 times, while the accuracy can be improved up to 6%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44:525–536MathSciNetCrossRefMATH Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44:525–536MathSciNetCrossRefMATH
go back to reference Choi K, Toh KA, Byun H (2011) Realtime training on mobile devices for face recognition applications. Pattern Recognit 44:386–400CrossRef Choi K, Toh KA, Byun H (2011) Realtime training on mobile devices for face recognition applications. Pattern Recognit 44:386–400CrossRef
go back to reference Choi K, Toh KA, Uh Y, Byun H (2012) Service-oriented architecture based on biometric using random features and incremental neural networks. Soft Comput 16:1539–1553CrossRef Choi K, Toh KA, Uh Y, Byun H (2012) Service-oriented architecture based on biometric using random features and incremental neural networks. Soft Comput 16:1539–1553CrossRef
go back to reference Ding S, Zhang N, Zhang J, Xu X, Shi Z (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8:587–595CrossRef Ding S, Zhang N, Zhang J, Xu X, Shi Z (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8:587–595CrossRef
go back to reference He Q, Jin X, Du C, Zhuang F, Shi Z (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95CrossRef He Q, Jin X, Du C, Zhuang F, Shi Z (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95CrossRef
go back to reference Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42:513–529CrossRef Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42:513–529CrossRef
go back to reference Kabán A (2014) New bounds on compressive linear least squares regression. In: AISTATS, pp 448–456 Kabán A (2014) New bounds on compressive linear least squares regression. In: AISTATS, pp 448–456
go back to reference Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with ELMs for big data. IEEE Intell Syst 28:31–34CrossRef Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with ELMs for big data. IEEE Intell Syst 28:31–34CrossRef
go back to reference Kim Y, Toh KA (2008) Sparse random projection for efficient cancelable face feature extraction. In: Proceedings of the IEEE conference on industrial electronics and applications, pp 2139–2144 Kim Y, Toh KA (2008) Sparse random projection for efficient cancelable face feature extraction. In: Proceedings of the IEEE conference on industrial electronics and applications, pp 2139–2144
go back to reference Li P, Hastie TJ, Church KW (2006) Very sparse random projections. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 287–296 Li P, Hastie TJ, Church KW (2006) Very sparse random projections. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 287–296
go back to reference Liu L, Fieguth P (2012) Texture classification from random features. IEEE Trans Pattern Anal Mach Intell 34:574–586CrossRef Liu L, Fieguth P (2012) Texture classification from random features. IEEE Trans Pattern Anal Mach Intell 34:574–586CrossRef
go back to reference Liu M, Liu B, Zhang C, Wang W, Sun W (2017) Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int J Int J Mach Learn Cyber 8:1039–1052CrossRef Liu M, Liu B, Zhang C, Wang W, Sun W (2017) Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int J Int J Mach Learn Cyber 8:1039–1052CrossRef
go back to reference Lu Y, Dhillon P, Foster DP, Ungar L (2013) Faster ridge regression via the subsampled randomized hadamard transform. In: Advances in neural information processing systems, pp 369–377 Lu Y, Dhillon P, Foster DP, Ungar L (2013) Faster ridge regression via the subsampled randomized hadamard transform. In: Advances in neural information processing systems, pp 369–377
go back to reference Luo J, Vong CM, Wong PK (2014) Sparse Bayesian extreme learning machine for multi-classification. IEEE Trans Neural Netw Learn Syst 25:836–843CrossRef Luo J, Vong CM, Wong PK (2014) Sparse Bayesian extreme learning machine for multi-classification. IEEE Trans Neural Netw Learn Syst 25:836–843CrossRef
go back to reference Mao W, Wang J, Xue Z (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8:1333–1345CrossRef Mao W, Wang J, Xue Z (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8:1333–1345CrossRef
go back to reference Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw Learn Syst 21:158–162CrossRef Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw Learn Syst 21:158–162CrossRef
go back to reference Minhas R, Baradarani A, Seifzadeh S, Wu QJ (2010) Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73:1906–1917CrossRef Minhas R, Baradarani A, Seifzadeh S, Wu QJ (2010) Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73:1906–1917CrossRef
go back to reference Mohammed AA, Minhas R, Wu QJ, Sid-Ahmed MA (2011) Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit 44:2588–2597CrossRefMATH Mohammed AA, Minhas R, Wu QJ, Sid-Ahmed MA (2011) Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit 44:2588–2597CrossRefMATH
go back to reference Pan C, Park DS, Yang Y, Yoo HM (2012) Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput Appl 21:1217–1227CrossRef Pan C, Park DS, Yang Y, Yoo HM (2012) Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput Appl 21:1217–1227CrossRef
go back to reference Paul S, Boutsidis C, Magdon-Ismail M, Drineas P (2013) Random projections for support vector machines. In: Artificial intelligence and statistics, pp 498–506 Paul S, Boutsidis C, Magdon-Ismail M, Drineas P (2013) Random projections for support vector machines. In: Artificial intelligence and statistics, pp 498–506
go back to reference Rong H-J, Ong Y-S, Tan A-H, Zhu Z (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72:359–366CrossRef Rong H-J, Ong Y-S, Tan A-H, Zhu Z (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72:359–366CrossRef
go back to reference Rong H-J, Suresh S, Zhao G-S (2011) Stable indirect adaptive neural controller for a class of nonlinear system. Neurocomputing 74:2582–2590CrossRef Rong H-J, Suresh S, Zhao G-S (2011) Stable indirect adaptive neural controller for a class of nonlinear system. Neurocomputing 74:2582–2590CrossRef
go back to reference Rong H-J, Zhao G-S (2013) Direct adaptive neural control of nonlinear systems with extreme learning machine. Neural Comput Appl 22:577–586CrossRef Rong H-J, Zhao G-S (2013) Direct adaptive neural control of nonlinear systems with extreme learning machine. Neural Comput Appl 22:577–586CrossRef
go back to reference Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27:809–821MathSciNetCrossRef Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27:809–821MathSciNetCrossRef
go back to reference Thanei GA, Heinze C, Meinshausen N (2017) Random projections for large-scale regression. In: Big and complex data analysis, pp 51–68 Thanei GA, Heinze C, Meinshausen N (2017) Random projections for large-scale regression. In: Big and complex data analysis, pp 51–68
go back to reference Vanschoren J, Van Rijn JN, Bischl B, Torgo L (2014) OpenML: networked science in machine learning. ACM SIGKDD Explor Newslett 15:49–60CrossRef Vanschoren J, Van Rijn JN, Bischl B, Torgo L (2014) OpenML: networked science in machine learning. ACM SIGKDD Explor Newslett 15:49–60CrossRef
go back to reference Vempala SS (2004) The random projection method. American Mathematical Society, ProvidenceMATH Vempala SS (2004) The random projection method. American Mathematical Society, ProvidenceMATH
go back to reference Wan S, Mak MW, Kung SY (2014a) R3P-Loc: a compact multi-label predictor using ridge regression and random projection for protein subcellular localization. J Theor Biol 360:34–45CrossRefMATH Wan S, Mak MW, Kung SY (2014a) R3P-Loc: a compact multi-label predictor using ridge regression and random projection for protein subcellular localization. J Theor Biol 360:34–45CrossRefMATH
go back to reference Wan S, Mak MW, Zhang B, Wang Y, Kung S-Y (2014b) Ensemble random projection for multi-label classification with application to protein subcellular localization. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 5999–6003 Wan S, Mak MW, Zhang B, Wang Y, Kung S-Y (2014b) Ensemble random projection for multi-label classification with application to protein subcellular localization. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 5999–6003
go back to reference Wang R, Wang X-Z, Kwong S, Xu C (2017a) Incorporating diversity and informativeness in multiple-instance active learning. IEEE Trans Fuzzy Syst 25:1460–1475CrossRef Wang R, Wang X-Z, Kwong S, Xu C (2017a) Incorporating diversity and informativeness in multiple-instance active learning. IEEE Trans Fuzzy Syst 25:1460–1475CrossRef
go back to reference Williams D, Hinton G (1986) Learning representations by back-propagating errors. Nature 323:533–538CrossRefMATH Williams D, Hinton G (1986) Learning representations by back-propagating errors. Nature 323:533–538CrossRefMATH
go back to reference Yan Y-T, Zhang Y-P, Zhang Y-W, Du X-Q (2017) A selective neural network ensemble classification for incomplete data. Int J Mach Learn Cybern 8:1513–1524CrossRef Yan Y-T, Zhang Y-P, Zhang Y-W, Du X-Q (2017) A selective neural network ensemble classification for incomplete data. Int J Mach Learn Cybern 8:1513–1524CrossRef
go back to reference Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8:1009–1017CrossRef Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8:1009–1017CrossRef
Metadata
Title
Efficient extreme learning machine via very sparse random projection
Authors
Chuangquan Chen
Chi-Man Vong
Chi-Man Wong
Weiru Wang
Pak-Kin Wong
Publication date
19-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 11/2018
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3128-7

Other articles of this Issue 11/2018

Soft Computing 11/2018 Go to the issue

Premium Partner