Skip to main content
Top

2022 | OriginalPaper | Chapter

Efficient Federated Learning Framework Based on Multi-Key Homomorphic Encryption

Authors : Qian Zhang, Shan Jing, Chuan Zhao, Bo Zhang, Zhenxiang Chen

Published in: Advances on P2P, Parallel, Grid, Cloud and Internet Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Federated learning is one of the cutting-edge research area in machine learning in era of big data. In federated learning, multiple clients rely on an untrusted server for model training in a distributed environment. Instead of sending local data directly to the server, the client achieves the effect of traditional centralized learning by sharing optimized parameters that represent the local model. However, the data used to train the model by the client holds private information of individuals. A potential adversary can steal the clients’ model parameters by corrupting the server, then recover clients’ local training data or reconstruct their local models. In order to solve the aforementioned problems, we construct an efficient federated learning framework based on multi-key homomorphic encryption, which can effectively restrict the adversary from accessing the clients’ model. In this framework, using homomorphic encryption ensures that all operations, including the server-side aggregation process, are secure and do not reveal any private information about the training data. At the same time, we consider multi-key scenario, where each client does not need to share the same public key and private key, but each of them has its own public-private key pair. It is convenient for the client to join the model update or be offline at any time, which greatly increases the flexibility and scalability of the system. Security and efficiency analysis indicates that the proposed framework is secure and efficient.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu, H., Jin, Y.: Multi-objective evolutionary federated learning. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1310–1322 (2019)CrossRef Zhu, H., Jin, Y.: Multi-objective evolutionary federated learning. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1310–1322 (2019)CrossRef
4.
go back to reference Corrado, G.: Computer, respond to this email. Google Res. Blog 03–11 (2015) Corrado, G.: Computer, respond to this email. Google Res. Blog 03–11 (2015)
5.
go back to reference Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015) Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)
6.
go back to reference Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)CrossRef Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)CrossRef
7.
go back to reference Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017) Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)
8.
go back to reference Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the gan: information leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 603–618 (2017) Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the gan: information leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 603–618 (2017)
9.
go back to reference Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: Stand-alone and federated learning under passive and active white-box inference attacks. arXiv preprint arXiv:1812.00910 (2018) Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: Stand-alone and federated learning under passive and active white-box inference attacks. arXiv preprint arXiv:​1812.​00910 (2018)
10.
go back to reference Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557 (2017) Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective. arXiv preprint arXiv:​1712.​07557 (2017)
11.
go back to reference McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963 (2017) McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent language models. arXiv preprint arXiv:​1710.​06963 (2017)
12.
go back to reference Roth, E., Noble, D., Falk, B.H., Haeberlen, A.: Honeycrisp: large-scale differentially private aggregation without a trusted core. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 196–210 (2019) Roth, E., Noble, D., Falk, B.H., Haeberlen, A.: Honeycrisp: large-scale differentially private aggregation without a trusted core. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 196–210 (2019)
14.
go back to reference Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., Rogers, R.: Protection against reconstruction and its applications in private federated learning. arXiv preprint arXiv:1812.00984 (2018) Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., Rogers, R.: Protection against reconstruction and its applications in private federated learning. arXiv preprint arXiv:​1812.​00984 (2018)
15.
go back to reference Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 99, 1 (2017) Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 99, 1 (2017)
17.
go back to reference Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058 (2013)CrossRef Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058 (2013)CrossRef
18.
go back to reference McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR 2017, pp. 1273–1282 McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR 2017, pp. 1273–1282
19.
go back to reference Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency, arXiv preprint arXiv:1610.05492 (2016) Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency, arXiv preprint arXiv:​1610.​05492 (2016)
20.
go back to reference Learning, F.: Collaborative machine learning without centralized training data (2016) Learning, F.: Collaborative machine learning without centralized training data (2016)
21.
go back to reference Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNet Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNet
22.
go back to reference Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM symposium on Theory of computing, pp. 169–178 (2009) Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM symposium on Theory of computing, pp. 169–178 (2009)
24.
go back to reference Mandal, K., Gong, G.: Privfl: practical privacy-preserving federated regressions on high-dimensional data over mobile networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, pp. 57–68 (2019) Mandal, K., Gong, G.: Privfl: practical privacy-preserving federated regressions on high-dimensional data over mobile networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, pp. 57–68 (2019)
Metadata
Title
Efficient Federated Learning Framework Based on Multi-Key Homomorphic Encryption
Authors
Qian Zhang
Shan Jing
Chuan Zhao
Bo Zhang
Zhenxiang Chen
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89899-1_10