Skip to main content
Top

2012 | OriginalPaper | Chapter

Efficient Flapping Flight Using Flexible Wings Oscillating at Resonance

Authors : Hassan Masoud, Alexander Alexeev

Published in: Natural Locomotion in Fluids and on Surfaces

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We use fully-coupled three-dimensional computer simulations to examine aerodynamics of elastic wings oscillating at resonance. Wings are modeled as planar elastic plates plunging sinusoidally at a low Reynolds number. The wings are tilted from horizontal, thereby generating asymmetric flow patterns and non-zero net aerodynamic forces. Our simulations reveal that resonance oscillations of elastic wings drastically enhance aerodynamic lift, thrust, and efficiency. We show that flexible wings driven at resonance by a simple harmonic stroke generate lift comparable to that of small insects that employ a significantly more complicated stroke kinematics. The results of our simulations point to the feasibility of using flexible resonant wings with a simple stroke for designing efficient microscale flying vehicles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Unless stated otherwise, all dimensional values are given in lattice Boltzmann units.
 
Literature
[1]
go back to reference Ellington CP (1984) The aerodynamics of hovering insect flight. Part 2. Morphological parameters. Philos Trans R Soc B 305(1122):17–40 Ellington CP (1984) The aerodynamics of hovering insect flight. Part 2. Morphological parameters. Philos Trans R Soc B 305(1122):17–40
[2]
go back to reference Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRef
[3]
go back to reference Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208CrossRef
[4]
go back to reference Lehmann FO (2008) When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. J Exp Biol 211(2):224–233CrossRef Lehmann FO (2008) When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. J Exp Biol 211(2):224–233CrossRef
[5]
go back to reference Shyy W, Lian Y, Tang J, Liu H, Trizila P, Stanford B, Bernal L, Cesnik C, Friedmann P, Ifju P (2008) Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24(4):351–373CrossRef Shyy W, Lian Y, Tang J, Liu H, Trizila P, Stanford B, Bernal L, Cesnik C, Friedmann P, Ifju P (2008) Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24(4):351–373CrossRef
[6]
go back to reference Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103(11):118102–118104CrossRef Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103(11):118102–118104CrossRef
[7]
go back to reference Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42(2):129–172CrossRef Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42(2):129–172CrossRef
[8]
go back to reference Zbikowski R (2002) On aerodynamic modelling of an insect-like flapping wring in hover for micro air vehicles. Philos Trans R Soc A 360(1791):273–290CrossRef Zbikowski R (2002) On aerodynamic modelling of an insect-like flapping wring in hover for micro air vehicles. Philos Trans R Soc A 360(1791):273–290CrossRef
[9]
go back to reference Wood RJ (2008) The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robot 24(2):341–347CrossRef Wood RJ (2008) The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robot 24(2):341–347CrossRef
[10]
go back to reference Ellington CP (1984) The aerodynamics of hovering insect flight. Part 3. Kinematics. Philos Trans R Soc B 305(1122):41–78 Ellington CP (1984) The aerodynamics of hovering insect flight. Part 3. Kinematics. Philos Trans R Soc B 305(1122):41–78
[11]
go back to reference Watman D, Furukawa T (2008) A system for motion control and analysis of high-speed passively twisting flapping wings. In: Proceedings of the IEEE international conference robotics, Pasadena, pp 1576–1581 Watman D, Furukawa T (2008) A system for motion control and analysis of high-speed passively twisting flapping wings. In: Proceedings of the IEEE international conference robotics, Pasadena, pp 1576–1581
[12]
go back to reference Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212(1):95–105CrossRef Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212(1):95–105CrossRef
[13]
go back to reference Michelin S, Smith SGL (2009) Resonance and propulsion performance of a heaving flexible wing. Phys Fluids 21(7):071902CrossRef Michelin S, Smith SGL (2009) Resonance and propulsion performance of a heaving flexible wing. Phys Fluids 21(7):071902CrossRef
[14]
go back to reference Masoud H, Alexeev A (2010) Resonance of flexible flapping wings at low Reynolds number. Phys Rev E 81(5):056304CrossRef Masoud H, Alexeev A (2010) Resonance of flexible flapping wings at low Reynolds number. Phys Rev E 81(5):056304CrossRef
[15]
go back to reference Spagnolie SE, Moret L, Shelley MJ, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22(4):041903CrossRef Spagnolie SE, Moret L, Shelley MJ, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22(4):041903CrossRef
[16]
go back to reference Liu L, Fang Z, He Z (2008) Optimization design of flapping mechanism and wings for flapping-wing MAVs. Intell Robot Appl 5314:245–255CrossRef Liu L, Fang Z, He Z (2008) Optimization design of flapping mechanism and wings for flapping-wing MAVs. Intell Robot Appl 5314:245–255CrossRef
[17]
go back to reference Thiria B, Godoy-Diana R (2010) How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E 82(1):015303CrossRef Thiria B, Godoy-Diana R (2010) How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E 82(1):015303CrossRef
[18]
go back to reference Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22(11):111902CrossRef Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22(11):111902CrossRef
[19]
go back to reference Ho S, Nassef H, Pornsinsirirak N, Tai YC, Ho CM (2003) Unsteady aerodynamics and flow control for flapping wing flyers. Prog Aerosp Sci 39(8):635–681CrossRef Ho S, Nassef H, Pornsinsirirak N, Tai YC, Ho CM (2003) Unsteady aerodynamics and flow control for flapping wing flyers. Prog Aerosp Sci 39(8):635–681CrossRef
[20]
go back to reference Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45(10):2448–2457CrossRef Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45(10):2448–2457CrossRef
[21]
go back to reference Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir Biomim 4(1):015002CrossRef Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir Biomim 4(1):015002CrossRef
[22]
go back to reference Kweon J, Choi H (2010) Sectional lift coefficient of a flapping wing in hovering motion. Phys Fluids 22(7):071703CrossRef Kweon J, Choi H (2010) Sectional lift coefficient of a flapping wing in hovering motion. Phys Fluids 22(7):071703CrossRef
[23]
go back to reference Qi DW, Liu YM, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow. Phys Fluid 22(9):091901CrossRef Qi DW, Liu YM, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow. Phys Fluid 22(9):091901CrossRef
[24]
go back to reference Masoud H, Alexeev A (2010) Modeling magnetic microcapsules that crawl in microchannels. Soft Matter 6(4):794–799CrossRef Masoud H, Alexeev A (2010) Modeling magnetic microcapsules that crawl in microchannels. Soft Matter 6(4):794–799CrossRef
[25]
go back to reference Alexeev A, Verber R, Balazs AC (2006) Designing compliant substrates to regulate the motion of vesicles. Phys Rev Lett 96(14):148103CrossRef Alexeev A, Verber R, Balazs AC (2006) Designing compliant substrates to regulate the motion of vesicles. Phys Rev Lett 96(14):148103CrossRef
[26]
go back to reference Alexeev A, Verberg R, Balazs AC (2005) Modeling the motion of microcapsules on compliant polymeric surfaces. Macromolecules 38(24):10244–10260CrossRef Alexeev A, Verberg R, Balazs AC (2005) Modeling the motion of microcapsules on compliant polymeric surfaces. Macromolecules 38(24):10244–10260CrossRef
[27]
go back to reference Alexeev A, Yeomans JM, Balazs AC (2008) Designing synthetic, pumping cilia that switch the flow direction in microchannels. Langmuir 24(21):12102–12106CrossRef Alexeev A, Yeomans JM, Balazs AC (2008) Designing synthetic, pumping cilia that switch the flow direction in microchannels. Langmuir 24(21):12102–12106CrossRef
[28]
go back to reference Alexeev A, Balazs AC (2007) Designing smart systems to selectively entrap and burst microcapsules. Soft Matter 3(12):1500–1505CrossRef Alexeev A, Balazs AC (2007) Designing smart systems to selectively entrap and burst microcapsules. Soft Matter 3(12):1500–1505CrossRef
[29]
go back to reference Smith KA, Alexeev A, Verberg R, Balazs AC (2006) Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22(16):6739–6742CrossRef Smith KA, Alexeev A, Verberg R, Balazs AC (2006) Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22(16):6739–6742CrossRef
[30]
go back to reference Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluid 13(11):3452–3459CrossRef Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluid 13(11):3452–3459CrossRef
[31]
go back to reference Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATH Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATH
[32]
go back to reference Chen H, Filippova O, Hoch J, Molvig K, Shock R, Teixeira C, Zhang R (2006) Grid refinement in lattice Boltzmann methods based on volumetric formulation. Phys A 362(1):158–167CrossRef Chen H, Filippova O, Hoch J, Molvig K, Shock R, Teixeira C, Zhang R (2006) Grid refinement in lattice Boltzmann methods based on volumetric formulation. Phys A 362(1):158–167CrossRef
[33]
go back to reference Zhu G, Alexeev A, Balazs AC (2007) Designing constricted microchannels to selectively entrap soft particles. Macromolecules 40(14):5176–5181CrossRef Zhu G, Alexeev A, Balazs AC (2007) Designing constricted microchannels to selectively entrap soft particles. Macromolecules 40(14):5176–5181CrossRef
[34]
go back to reference Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207MATHCrossRef Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207MATHCrossRef
[35]
go back to reference Shih CC, Buchanan HJ (1971) Drag on oscillating flat plates in liquids at low Reynolds numbers. J. Fluid Mech 48(2):229–239CrossRef Shih CC, Buchanan HJ (1971) Drag on oscillating flat plates in liquids at low Reynolds numbers. J. Fluid Mech 48(2):229–239CrossRef
[36]
go back to reference Keulegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60(5):423–440CrossRef Keulegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60(5):423–440CrossRef
[37]
go back to reference Van Eysden CA, Sader JE (2007) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: arbitrary mode order. J Appl Phys 101(4):044908CrossRef Van Eysden CA, Sader JE (2007) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: arbitrary mode order. J Appl Phys 101(4):044908CrossRef
[39]
go back to reference Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155CrossRef Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155CrossRef
[40]
[41]
go back to reference Bronson JR, Pulskamp JS, Polcawich RG, Kroninger CM, Wetzel ED (2009) PZT MEMS actuated flapping wings for insect-inspired robotics. In: Proceedings of the IEEE 22nd international conference micro electro mechanical systems, Sorrento, pp 1047–1050 Bronson JR, Pulskamp JS, Polcawich RG, Kroninger CM, Wetzel ED (2009) PZT MEMS actuated flapping wings for insect-inspired robotics. In: Proceedings of the IEEE 22nd international conference micro electro mechanical systems, Sorrento, pp 1047–1050
Metadata
Title
Efficient Flapping Flight Using Flexible Wings Oscillating at Resonance
Authors
Hassan Masoud
Alexander Alexeev
Copyright Year
2012
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3997-4_19

Premium Partner