Skip to main content
Top

2025 | OriginalPaper | Chapter

Efficient Implementation of Polar Decoder: Design and Performance Analysis

Authors : Swapnil P. Badar, Kamlesh Khanchandani

Published in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce and evaluate two novel methodologies for the efficient implementation of polar decoders. Polar decoders are integral components within contemporary 5G communication systems, specifically for error correction in control channels. Although polar codes offer significant advantages, their implementation often poses computational challenges, potentially impacting latency and throughput. To overcome these challenges, we present two innovative decoder designs: a component code-based approach and a specialized node-based design that identifies distinct bit patterns to mitigate decoding complexity. The 16-bit polar decoder, realized through our proposed designs, is synthesized and precisely simulated using Cadence Suite with TSMC 65nm CMOS process. Our findings highlight remarkable enhancements in latency, area, throughput, and power efficiency, rendering them highly suitable for cutting-edge communication systems. Notably, the specialized node-based decoder emerges as the top performer, exhibiting a minimal latency of 0.989 ns and an impressive throughput of 16.17 Gbps, all while occupying a compact area of 787.68 um2 and consuming a power of  0.024 mW. The component code-based decoder also excels with a latency of 1.192 ns, a throughput of 13.42 Gbps, an area footprint of 1292.4 um2, and a power consumption of 0.109 mW. These outcomes underscore the viability of our approaches for efficient polar decoding in advanced communication systems. Furthermore, these methodologies hold the potential to be scaled for higher order polar decoders, offering promising avenues for future research and application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. ICC, Geneva, Switzerland, pp 1064–1070 Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. ICC, Geneva, Switzerland, pp 1064–1070
2.
go back to reference Gallager RG (1963) Low density parity-check codes. Cambridge Gallager RG (1963) Low density parity-check codes. Cambridge
3.
go back to reference Arıkan E (2009) Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theor 55(7):3051–3071 Arıkan E (2009) Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theor 55(7):3051–3071
4.
go back to reference Samsung, Qualcomm Incorporated, Nokia, ASB, KT Corporation, Intel Corporation, Lisbon, Portugal, Technical Specification (TS): 3GPP RAN WG1 Meeting 86bis, R1-1610690, Way Forward on Observations for eMBB Data Channel Coding Samsung, Qualcomm Incorporated, Nokia, ASB, KT Corporation, Intel Corporation, Lisbon, Portugal, Technical Specification (TS): 3GPP RAN WG1 Meeting 86bis, R1-1610690, Way Forward on Observations for eMBB Data Channel Coding
5.
go back to reference T. S. (TS) ZTE Microelectronics, Reno, USA: 3GPP TSG RAN WG1 87, R1-1611109, Evaluation on Channel coding Candidates for eMBB Control Channel T. S. (TS) ZTE Microelectronics, Reno, USA: 3GPP TSG RAN WG1 87, R1-1611109, Evaluation on Channel coding Candidates for eMBB Control Channel
6.
go back to reference Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2014) Fast polar decoders: algorithm and implementation. IEEE J Sel Areas Commun 32(5):946–957 Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2014) Fast polar decoders: algorithm and implementation. IEEE J Sel Areas Commun 32(5):946–957
7.
go back to reference Hanif M, Ardakani M (2017) Fast successive-cancellation decoding of polar codes: identification and decoding of new nodes. IEEE Commun Lett 21(11):2360–2363 Hanif M, Ardakani M (2017) Fast successive-cancellation decoding of polar codes: identification and decoding of new nodes. IEEE Commun Lett 21(11):2360–2363
8.
go back to reference Maunder RG (2016) A vision for 5G channel coding. Accelercomm White Pap, no. September, pp 1–14 Maunder RG (2016) A vision for 5G channel coding. Accelercomm White Pap, no. September, pp 1–14
9.
go back to reference Tal I, Vardy A (2013) How to construct polar codes. IEEE Trans Inf Theor 59(10):6562–6582 Tal I, Vardy A (2013) How to construct polar codes. IEEE Trans Inf Theor 59(10):6562–6582
10.
go back to reference Tal I, Vardy A (2015) List decoding of polar codes. IEEE Trans Inf Theor 61(5):2213–2226 Tal I, Vardy A (2015) List decoding of polar codes. IEEE Trans Inf Theor 61(5):2213–2226
11.
go back to reference Zhou Y, Lin J, Wang Z (2019) Improved fast-SSC-flip decoding of polar codes. IEEE Commun Lett 23(6):950–953 Zhou Y, Lin J, Wang Z (2019) Improved fast-SSC-flip decoding of polar codes. IEEE Commun Lett 23(6):950–953
12.
go back to reference Badar SP, Khanchandani K, Wankhede P (2023) Fast polar decoder implementation using special nodes. In: 2nd international conference paradigm shifts communications embedded systems, machine learning and signal processing, PCEMS 2023, no 1 Badar SP, Khanchandani K, Wankhede P (2023) Fast polar decoder implementation using special nodes. In: 2nd international conference paradigm shifts communications embedded systems, machine learning and signal processing, PCEMS 2023, no 1
13.
go back to reference Maunder RG (2018) The implementation challenges of polar codes, pp 1–18 Maunder RG (2018) The implementation challenges of polar codes, pp 1–18
14.
go back to reference Badar SP, Khanchandani K (2022) Successive cancellation polar decoder implementation using processing elements. In: IEEE region 10 symposium, TENSYMP 2022, no 1, pp 0–5 Badar SP, Khanchandani K (2022) Successive cancellation polar decoder implementation using processing elements. In: IEEE region 10 symposium, TENSYMP 2022, no 1, pp 0–5
15.
go back to reference Hashemi SA, Condo C, Mondelli M, Gross WJ (2019) Rate-flexible fast polar decoders. IEEE Trans Signal Process 67(22):5689–5701 Hashemi SA, Condo C, Mondelli M, Gross WJ (2019) Rate-flexible fast polar decoders. IEEE Trans Signal Process 67(22):5689–5701
16.
go back to reference Kam D, Lee Y (2019) Ultra-low-latency parallel SC polar decoding architecture for 5G wireless communications. In: Proceedings of IEEE international symposium circuits systems, vol 1 Kam D, Lee Y (2019) Ultra-low-latency parallel SC polar decoding architecture for 5G wireless communications. In: Proceedings of IEEE international symposium circuits systems, vol 1
17.
go back to reference Xiong C, Lin J, Yan Z (2016) A multimode area-efficient SCL polar decoder. IEEE Trans Very Large Scale Integr Syst 24(12):3499–3512 Xiong C, Lin J, Yan Z (2016) A multimode area-efficient SCL polar decoder. IEEE Trans Very Large Scale Integr Syst 24(12):3499–3512
18.
go back to reference Leroux C, Raymond AJ, Sarkis G, Gross WJ (2013) A Semi-parallel successive-cancellation decoder for polar codes. IEEE Trans Signal Process 61(2):289–299 Leroux C, Raymond AJ, Sarkis G, Gross WJ (2013) A Semi-parallel successive-cancellation decoder for polar codes. IEEE Trans Signal Process 61(2):289–299
19.
go back to reference Ercan F, Tonnellier T, Gross WJ (2020) Energy-efficient hardware architectures for fast polar decoders. IEEE Trans Circuits Syst I Regul Pap 67(1):322–335 Ercan F, Tonnellier T, Gross WJ (2020) Energy-efficient hardware architectures for fast polar decoders. IEEE Trans Circuits Syst I Regul Pap 67(1):322–335
20.
go back to reference Giard P, Balatsoukas-Stimming A, Sarkis G, Thibeault C, Gross WJ (2018) Fast low-complexity decoders for low-rate polar codes. J Signal Process Syst 90(5):675–685 Giard P, Balatsoukas-Stimming A, Sarkis G, Thibeault C, Gross WJ (2018) Fast low-complexity decoders for low-rate polar codes. J Signal Process Syst 90(5):675–685
Metadata
Title
Efficient Implementation of Polar Decoder: Design and Performance Analysis
Authors
Swapnil P. Badar
Kamlesh Khanchandani
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_12