Skip to main content
Top
Published in:

01-12-2020 | Original Article

Efficient influence spread estimation for influence maximization

Authors: Zahra Aghaee, Sahar Kianian

Published in: Social Network Analysis and Mining | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Word-of-Mouth promotion is among the effective methods of marketing and is highly regarded by many commercial companies. This type of marketing is mapped on the influence maximization problem (IMP) in the social networks, and its goal is finding a specific set of the individuals with the maximum influence on the network. Therefore, in this paper, a heuristic-greedy algorithm named the HEDVGreedy algorithm was proposed for the IMP in the social networks. In this algorithm, the expected diffusion value of the graph nodes was calculated using the heuristic method, and then, the effective nodes were selected using the greedy method. Experimental results showed that the proposed algorithm has a high performance than the baseline algorithms while, it significantly reduces the running time of the computations under both the Independent Cascade and Weighted Cascade models in the eight real-world data sets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Banerjee S, Jenamani M, Pratihar DK (2019) ComBIM: a community-based solution approach for the Budgeted Influence Maximization Problem. Expert Syst Appl 125:1–13CrossRef Banerjee S, Jenamani M, Pratihar DK (2019) ComBIM: a community-based solution approach for the Budgeted Influence Maximization Problem. Expert Syst Appl 125:1–13CrossRef
go back to reference Beni HA, Bouyer A (2020) TI-SC: top-k influential nodes selection based on community detection and scoring criteria in social networks. J Ambient Intell Humaniz Comput 1–20 Beni HA, Bouyer A (2020) TI-SC: top-k influential nodes selection based on community detection and scoring criteria in social networks. J Ambient Intell Humaniz Comput 1–20
go back to reference Bian R et al (2019) Identifying top-k nodes in social networks: a survey. ACM Comput Surv (CSUR) 52(1):1–33CrossRef Bian R et al (2019) Identifying top-k nodes in social networks: a survey. ACM Comput Surv (CSUR) 52(1):1–33CrossRef
go back to reference Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308CrossRef Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308CrossRef
go back to reference Bucur D, Iacca G (2016) Influence maximization in social networks with genetic algorithms. In: European conference on the applications of evolutionary computation. Springer Bucur D, Iacca G (2016) Influence maximization in social networks with genetic algorithms. In: European conference on the applications of evolutionary computation. Springer
go back to reference Chang T-C et al (2019) Seed selection and social coupon allocation for redemption maximization in online social networks. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE Chang T-C et al (2019) Seed selection and social coupon allocation for redemption maximization in online social networks. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE
go back to reference Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
go back to reference Cheng S et al (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management. ACM Cheng S et al (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management. ACM
go back to reference Cui L et al (2018) DDSE: a novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks. J Netw Comput Appl 103:119–130CrossRef Cui L et al (2018) DDSE: a novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks. J Netw Comput Appl 103:119–130CrossRef
go back to reference da Silva AR et al (2018) Influence maximization in network by genetic algorithm on linear threshold model. In: International conference on computational science and its applications. Springer da Silva AR et al (2018) Influence maximization in network by genetic algorithm on linear threshold model. In: International conference on computational science and its applications. Springer
go back to reference Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
go back to reference Emami N, Mozafari N, Hamzeh A (2018) Continuous state online influence maximization in social network. Soc Netw Anal Min 8(1):32CrossRef Emami N, Mozafari N, Hamzeh A (2018) Continuous state online influence maximization in social network. Soc Netw Anal Min 8(1):32CrossRef
go back to reference Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826MathSciNetCrossRef Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826MathSciNetCrossRef
go back to reference Gong M et al (2016) Influence maximization in social networks based on discrete particle swarm optimization. Inf Sci 367:600–614CrossRef Gong M et al (2016) Influence maximization in social networks based on discrete particle swarm optimization. Inf Sci 367:600–614CrossRef
go back to reference Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on World wide web. ACM Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on World wide web. ACM
go back to reference Guimera R et al (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103CrossRef Guimera R et al (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103CrossRef
go back to reference He Q et al (2019) An effective scheme to address influence maximization for opinion formation in social networks. Trans Emerg Telecommun Technol 30(6):e3599 He Q et al (2019) An effective scheme to address influence maximization for opinion formation in social networks. Trans Emerg Telecommun Technol 30(6):e3599
go back to reference Jiang Q et al (2011) Simulated annealing based influence maximization in social networks. In: Twenty-fifth AAAI conference on artificial intelligence Jiang Q et al (2011) Simulated annealing based influence maximization in social networks. In: Twenty-fifth AAAI conference on artificial intelligence
go back to reference Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
go back to reference Krömer P, Nowaková J (2017) Guided genetic algorithm for the influence maximization problem. In: International computing and combinatorics conference. Springer Krömer P, Nowaková J (2017) Guided genetic algorithm for the influence maximization problem. In: International computing and combinatorics conference. Springer
go back to reference Leskovec J et al (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Leskovec J et al (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
go back to reference Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data (TKDD) 1(1):2-esCrossRef Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data (TKDD) 1(1):2-esCrossRef
go back to reference Liu D et al (2017a) A fast and efficient algorithm for mining top-k nodes in complex networks. Sci Rep 7:43330CrossRef Liu D et al (2017a) A fast and efficient algorithm for mining top-k nodes in complex networks. Sci Rep 7:43330CrossRef
go back to reference Liu S-J, Chen C-Y, Tsai C-W (2017b) An effective simulated annealing for influence maximization problem of online social networks. Procedia Comput Sci 113:478–483CrossRef Liu S-J, Chen C-Y, Tsai C-W (2017b) An effective simulated annealing for influence maximization problem of online social networks. Procedia Comput Sci 113:478–483CrossRef
go back to reference Ma L, Liu Y (2019) Maximizing three-hop influence spread in social networks using discrete comprehensive learning artificial bee colony optimizer. Appl Soft Comput 83:105606CrossRef Ma L, Liu Y (2019) Maximizing three-hop influence spread in social networks using discrete comprehensive learning artificial bee colony optimizer. Appl Soft Comput 83:105606CrossRef
go back to reference More JS, Lingam C (2019) A gradient-based methodology for optimizing time for influence diffusion in social networks. Soc Netw Anal Min 9(1):5CrossRef More JS, Lingam C (2019) A gradient-based methodology for optimizing time for influence diffusion in social networks. Soc Netw Anal Min 9(1):5CrossRef
go back to reference Morone F et al (2016) Collective influence algorithm to find influencers via optimal percolation in massively large social media. Sci Rep 6:30062CrossRef Morone F et al (2016) Collective influence algorithm to find influencers via optimal percolation in massively large social media. Sci Rep 6:30062CrossRef
go back to reference Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104MathSciNetCrossRef Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104MathSciNetCrossRef
go back to reference Peng S et al (2018) Influence analysis in social networks: a survey. J Netw Comput Appl 106:17–32CrossRef Peng S et al (2018) Influence analysis in social networks: a survey. J Netw Comput Appl 106:17–32CrossRef
go back to reference Rui X et al (2019) A reversed node ranking approach for influence maximization in social networks. Appl Intell 49(7):2684–2698CrossRef Rui X et al (2019) A reversed node ranking approach for influence maximization in social networks. Appl Intell 49(7):2684–2698CrossRef
go back to reference Rui X et al (2020) A neighbour scale fixed approach for influence maximization in social networks. Computing 102(2):427–449MathSciNetCrossRef Rui X et al (2020) A neighbour scale fixed approach for influence maximization in social networks. Computing 102(2):427–449MathSciNetCrossRef
go back to reference Sanatkar MR (2020) The dynamics of polarized beliefs in networks governed by viral diffusion and media influence. Soc Netw Anal Min 10(1):1–21CrossRef Sanatkar MR (2020) The dynamics of polarized beliefs in networks governed by viral diffusion and media influence. Soc Netw Anal Min 10(1):1–21CrossRef
go back to reference Saxena B, Kumar P (2019) A node activity and connectivity-based model for influence maximization in social networks. Soc Netw Anal Min 9(1):40CrossRef Saxena B, Kumar P (2019) A node activity and connectivity-based model for influence maximization in social networks. Soc Netw Anal Min 9(1):40CrossRef
go back to reference Shang J et al (2017) CoFIM: a community-based framework for influence maximization on large-scale networks. Knowl-Based Syst 117:88–100CrossRef Shang J et al (2017) CoFIM: a community-based framework for influence maximization on large-scale networks. Knowl-Based Syst 117:88–100CrossRef
go back to reference Shang J et al (2018) IMPC: influence maximization based on multi-neighbor potential in community networks. Physica A 512:1085–1103CrossRef Shang J et al (2018) IMPC: influence maximization based on multi-neighbor potential in community networks. Physica A 512:1085–1103CrossRef
go back to reference Singh SS et al (2019) Mim2: multiple influence maximization across multiple social networks. Physica A 526:120902CrossRef Singh SS et al (2019) Mim2: multiple influence maximization across multiple social networks. Physica A 526:120902CrossRef
go back to reference Tang J, Tang X, Yuan J (2018a) An efficient and effective hop-based approach for influence maximization in social networks. Soc Netw Anal Min 8(1):10CrossRef Tang J, Tang X, Yuan J (2018a) An efficient and effective hop-based approach for influence maximization in social networks. Soc Netw Anal Min 8(1):10CrossRef
go back to reference Tang J et al (2018b) Maximizing the spread of influence via the collective intelligence of discrete bat algorithm. Knowl-Based Syst 160:88–103CrossRef Tang J et al (2018b) Maximizing the spread of influence via the collective intelligence of discrete bat algorithm. Knowl-Based Syst 160:88–103CrossRef
go back to reference Tang J et al (2019a) An adaptive discrete particle swarm optimization for influence maximization based on network community structure. Int J Mod Phys C (IJMPC) 30(06):1–21MathSciNet Tang J et al (2019a) An adaptive discrete particle swarm optimization for influence maximization based on network community structure. Int J Mod Phys C (IJMPC) 30(06):1–21MathSciNet
go back to reference Tang J et al (2019b) Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization. Physica A 513:477–496CrossRef Tang J et al (2019b) Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization. Physica A 513:477–496CrossRef
go back to reference Tang J et al (2020) A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks. Knowl-Based Syst 187:104833CrossRef Tang J et al (2020) A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks. Knowl-Based Syst 187:104833CrossRef
go back to reference Tsai C-W, Liu S-J (2019) SEIM: search economics for influence maximization in online social networks. Future Gener Comput Syst 93:1055–1064CrossRef Tsai C-W, Liu S-J (2019) SEIM: search economics for influence maximization in online social networks. Future Gener Comput Syst 93:1055–1064CrossRef
go back to reference Tsai C-W, Yang Y-C, Chiang (2015) A genetic newgreedy algorithm for influence maximization in social network. In: 2015 IEEE international conference on systems, man, and cybernetics. IEEE Tsai C-W, Yang Y-C, Chiang (2015) A genetic newgreedy algorithm for influence maximization in social network. In: 2015 IEEE international conference on systems, man, and cybernetics. IEEE
go back to reference Wang Q et al (2017) Discrete particle swarm optimization based influence maximization in complex networks. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE Wang Q et al (2017) Discrete particle swarm optimization based influence maximization in complex networks. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE
go back to reference Wang W, Street WN (2018) Modeling and maximizing influence diffusion in social networks for viral marketing. Appl Netw Sci 3(1):6CrossRef Wang W, Street WN (2018) Modeling and maximizing influence diffusion in social networks for viral marketing. Appl Netw Sci 3(1):6CrossRef
go back to reference Wu K (2015) Influence maximization in social networks. Concordia University Wu K (2015) Influence maximization in social networks. Concordia University
go back to reference Wu H et al (2018) LAIM: a linear time iterative approach for efficient influence maximization in large-scale networks. IEEE Access 6:44221–44234CrossRef Wu H et al (2018) LAIM: a linear time iterative approach for efficient influence maximization in large-scale networks. IEEE Access 6:44221–44234CrossRef
go back to reference Zareie A, Sheikhahmadi A, Jalili M (2020) Identification of influential users in social network using gray wolf optimization algorithm. Expert Syst Appl 142:112971CrossRef Zareie A, Sheikhahmadi A, Jalili M (2020) Identification of influential users in social network using gray wolf optimization algorithm. Expert Syst Appl 142:112971CrossRef
go back to reference Zhu W et al (2019) Location-based seeds selection for influence blocking maximization in social networks. IEEE Access 7:27272–27287CrossRef Zhu W et al (2019) Location-based seeds selection for influence blocking maximization in social networks. IEEE Access 7:27272–27287CrossRef
Metadata
Title
Efficient influence spread estimation for influence maximization
Authors
Zahra Aghaee
Sahar Kianian
Publication date
01-12-2020
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2020
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-00694-z

Premium Partner