Skip to main content
Top
Published in: Wireless Networks 4/2020

31-05-2019

Efficient measurement model for critical nodes based on edge clustering coefficients and edge betweenness

Authors: Yu-Jing Deng, Ya-Qian Li, Rong-Rong Yin, He-Yao Zhao, Bin Liu

Published in: Wireless Networks | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Identifying critical nodes is vital for optimizing network structure and enhancing network robustness in complex networks. The concepts of edge betweenness and edge clustering coefficients are based on node betweenness and the node clustering coefficient. This paper proposes a new measurement model for critical nodes based on global features and local features, which considers the edge betweenness and edge clustering coefficients and combines the mutual influence between nodes and edges in a network. Subsequently, an algorithm based on the aforementioned model is proposed. The proposed algorithm is evaluated on the ARPA network, and it is proven to be effective in determining the importance of nodes. Another experiment is performed on a scale-free network, in which the accuracy of the algorithm is compared with other algorithms. Experimental results prove that the proposed algorithm is robust under deliberate attacks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics,74(1), 47–97.MathSciNetCrossRef Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics,74(1), 47–97.MathSciNetCrossRef
2.
go back to reference Attia, M., Senouci, S. M., Sedjelmaci, H., Aglzim, E.-H., & Chrenko, D. (2018). An efficient intrusion detection system against cyber-physical attacks in the smart grid. Computers & Electrical Engineering,68, 499–512.CrossRef Attia, M., Senouci, S. M., Sedjelmaci, H., Aglzim, E.-H., & Chrenko, D. (2018). An efficient intrusion detection system against cyber-physical attacks in the smart grid. Computers & Electrical Engineering,68, 499–512.CrossRef
3.
go back to reference Lü, L., Medo, M., Yeung, C. H., et al. (2012). Recommender systems. Physics Reports,519(1), 1–49.CrossRef Lü, L., Medo, M., Yeung, C. H., et al. (2012). Recommender systems. Physics Reports,519(1), 1–49.CrossRef
4.
go back to reference Zamanifar, A., Nazemi, E., & Vahidi-Asl, M. (2016). DMP-IOT: A distributed movement prediction scheme for IOT health-care applications. Computers & Electrical Engineering,58, 310–326.CrossRef Zamanifar, A., Nazemi, E., & Vahidi-Asl, M. (2016). DMP-IOT: A distributed movement prediction scheme for IOT health-care applications. Computers & Electrical Engineering,58, 310–326.CrossRef
5.
go back to reference Yıldırım, M. A., Goh, K. I., Cusick, M. E., et al. (2007). Drug—Target network. Nature Biotechnology,25(10), 1119–1126.CrossRef Yıldırım, M. A., Goh, K. I., Cusick, M. E., et al. (2007). Drug—Target network. Nature Biotechnology,25(10), 1119–1126.CrossRef
6.
go back to reference Konstantin, K., Ángeles, S. M., & San, M. M. (2012). A measure of individual role in collective dynamics. Scientific Reports,2(2), 292-1–292-8. Konstantin, K., Ángeles, S. M., & San, M. M. (2012). A measure of individual role in collective dynamics. Scientific Reports,2(2), 292-1–292-8.
7.
go back to reference Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack robustness and centrality of complex networks. Plos One,8(4), e59613-1–e59613-17.CrossRef Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack robustness and centrality of complex networks. Plos One,8(4), e59613-1–e59613-17.CrossRef
8.
go back to reference Zhao, J., Yu, L., Li, J. R., et al. (2015). Identifying influential nodes based on graph signal processing in complex networks. Chinese Physics B,24(5), 639–648. Zhao, J., Yu, L., Li, J. R., et al. (2015). Identifying influential nodes based on graph signal processing in complex networks. Chinese Physics B,24(5), 639–648.
9.
go back to reference Goh, K. I., Oh, E., Kahng, B., et al. (2003). Betweenness centrality correlation in social networks. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,67(2), 017101.CrossRef Goh, K. I., Oh, E., Kahng, B., et al. (2003). Betweenness centrality correlation in social networks. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,67(2), 017101.CrossRef
10.
go back to reference Friedkin, N. E. (1991). Theoretical foundations for centrality measures. The American Journal of Sociology,96(6), 1478–1504.CrossRef Friedkin, N. E. (1991). Theoretical foundations for centrality measures. The American Journal of Sociology,96(6), 1478–1504.CrossRef
12.
go back to reference Ibnoulouafi, A., & El Haziti, M. (2018). Density centrality: identifying influential nodes based on area density formula. Chaos, Solitons & Fractals,114, 69–80.CrossRef Ibnoulouafi, A., & El Haziti, M. (2018). Density centrality: identifying influential nodes based on area density formula. Chaos, Solitons & Fractals,114, 69–80.CrossRef
13.
go back to reference Albert, R., Jeong, H., & Barabási, A. L. (2004). Error and attack tolerance of complex networks. Nature,340(1–3), 388–394.MathSciNet Albert, R., Jeong, H., & Barabási, A. L. (2004). Error and attack tolerance of complex networks. Nature,340(1–3), 388–394.MathSciNet
14.
go back to reference Kitsak, M., Gallos, L. K., Havlin, S., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics,6(11), 888–893.CrossRef Kitsak, M., Gallos, L. K., Havlin, S., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics,6(11), 888–893.CrossRef
15.
go back to reference Chen, D. B., Lü, L. Y., Shang, M. S., et al. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications,391(4), 1777–1787.CrossRef Chen, D. B., Lü, L. Y., Shang, M. S., et al. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications,391(4), 1777–1787.CrossRef
16.
go back to reference Centola, D. (2010). The spread of behavior in an online social network experiment. Science,329(5996), 1194–1197.CrossRef Centola, D. (2010). The spread of behavior in an online social network experiment. Science,329(5996), 1194–1197.CrossRef
17.
go back to reference Han, Z. M., Chen, Y., Li, M. Q., et al. (2016). An efficient node influence measurement based on triangle in complex networks. Acta Physica Sinica,65(16), 168901-1–168901-12. Han, Z. M., Chen, Y., Li, M. Q., et al. (2016). An efficient node influence measurement based on triangle in complex networks. Acta Physica Sinica,65(16), 168901-1–168901-12.
18.
go back to reference Bian, T., & Deng, Y. (2018). Identifying influential nodes in complex networks: A node information dimension approach. Chaos: An Interdisciplinary Journal of Nonlinear Science,28(4), 043109.MathSciNetCrossRef Bian, T., & Deng, Y. (2018). Identifying influential nodes in complex networks: A node information dimension approach. Chaos: An Interdisciplinary Journal of Nonlinear Science,28(4), 043109.MathSciNetCrossRef
19.
go back to reference Fox, W., & Everton, S. (2013). Mathematical modeling in social network analysis: Using TOPSIS to find node influences in a social network. Journal of Mathematics and System Science,3(10), 531–541. Fox, W., & Everton, S. (2013). Mathematical modeling in social network analysis: Using TOPSIS to find node influences in a social network. Journal of Mathematics and System Science,3(10), 531–541.
20.
go back to reference Ren, Z. M., Shao, F., Liu, J. G., et al. (2013). Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica,62(12), 128901-1–128901-8. Ren, Z. M., Shao, F., Liu, J. G., et al. (2013). Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica,62(12), 128901-1–128901-8.
21.
go back to reference Xu, S., & Wang, P. (2017). Identifying important nodes by adaptive LeaderRank. Physica A: Statistical Mechanics and its Applications,469, 654–664.CrossRef Xu, S., & Wang, P. (2017). Identifying important nodes by adaptive LeaderRank. Physica A: Statistical Mechanics and its Applications,469, 654–664.CrossRef
22.
go back to reference Chen, D. B., Gao, H., Lü, L. Y., et al. (2013). Identifying influential nodes in large-scale directed networks: the role of clustering. Plos One,8(10), e77455-1–e77455-10. Chen, D. B., Gao, H., Lü, L. Y., et al. (2013). Identifying influential nodes in large-scale directed networks: the role of clustering. Plos One,8(10), e77455-1–e77455-10.
23.
go back to reference Wang, H., Li, M., Wang, J. X., et al. (2011). A new method for identifying essential proteins based on edge clustering coefficient. International Symposium on Bioinformatics Research and Applications,6674, 87–98.CrossRef Wang, H., Li, M., Wang, J. X., et al. (2011). A new method for identifying essential proteins based on edge clustering coefficient. International Symposium on Bioinformatics Research and Applications,6674, 87–98.CrossRef
24.
go back to reference Newman, M. E. J., & Girvan, M. (2004). Finding a devaluating community structure in networks. Physical Review E,69(2), 026113.CrossRef Newman, M. E. J., & Girvan, M. (2004). Finding a devaluating community structure in networks. Physical Review E,69(2), 026113.CrossRef
25.
go back to reference Salavati, C., Abdollahpouri, A., & Manbari, Z. (2018). BridgeRank: A novel fast centrality measure based on local structure of the network. Physica A: Statistical Mechanics and its Applications,496, 635–653.CrossRef Salavati, C., Abdollahpouri, A., & Manbari, Z. (2018). BridgeRank: A novel fast centrality measure based on local structure of the network. Physica A: Statistical Mechanics and its Applications,496, 635–653.CrossRef
26.
go back to reference Wang, Z., Du, C., Fan, J., et al. (2017). Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing,260, 466–477.CrossRef Wang, Z., Du, C., Fan, J., et al. (2017). Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing,260, 466–477.CrossRef
27.
28.
go back to reference Zhang, P., Wang, J., Li, X., et al. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its Applications,387(27), 6869–6975.CrossRef Zhang, P., Wang, J., Li, X., et al. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its Applications,387(27), 6869–6975.CrossRef
29.
go back to reference Sabet, M., & Naji, H. (2016). An energy efficient multi-level route-aware clustering algorithm for wireless sensor networks: A self-organized approach. Computers & Electrical Engineering,56, 399–417.CrossRef Sabet, M., & Naji, H. (2016). An energy efficient multi-level route-aware clustering algorithm for wireless sensor networks: A self-organized approach. Computers & Electrical Engineering,56, 399–417.CrossRef
30.
go back to reference Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical Review E,65(2), 026107.CrossRef Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical Review E,65(2), 026107.CrossRef
31.
go back to reference Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,63(2), 066117.CrossRef Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,63(2), 066117.CrossRef
32.
go back to reference Liu, J. G., Lin, J. H., Guo, Q., et al. (2015). Locating influential nodes via dynamics-sensitive centrality. Scientific Reports,6(3), 032812. Liu, J. G., Lin, J. H., Guo, Q., et al. (2015). Locating influential nodes via dynamics-sensitive centrality. Scientific Reports,6(3), 032812.
33.
go back to reference Lü, L. Y., Chen, D. B., Ren, X. L., et al. (2016). Vital nodes identification in complex networks. Physics Reports,13(650), 1–63.MathSciNet Lü, L. Y., Chen, D. B., Ren, X. L., et al. (2016). Vital nodes identification in complex networks. Physics Reports,13(650), 1–63.MathSciNet
34.
go back to reference Knight, W. R. (1966). A computer method for calculating Kendall’s Tau with ungrouped data. Journal of the American Statistical Association,61(314), 436–439.CrossRef Knight, W. R. (1966). A computer method for calculating Kendall’s Tau with ungrouped data. Journal of the American Statistical Association,61(314), 436–439.CrossRef
35.
go back to reference Yang, X. F., Megson, G. M., Tang, Y. Y., et al. (2008). Largest connected component of a star graph with faulty vertices. International Journal of Computer and Mathematics,85(12), 1771–1778.MathSciNetCrossRef Yang, X. F., Megson, G. M., Tang, Y. Y., et al. (2008). Largest connected component of a star graph with faulty vertices. International Journal of Computer and Mathematics,85(12), 1771–1778.MathSciNetCrossRef
36.
go back to reference Hu, P., Fan, W., & Mei, S. (2015). Identifying node importance in complex networks. Physica A: Statistical Mechanics and its Applications,429, 169–176.CrossRef Hu, P., Fan, W., & Mei, S. (2015). Identifying node importance in complex networks. Physica A: Statistical Mechanics and its Applications,429, 169–176.CrossRef
37.
go back to reference Liu, J. G., Ren, Z. M., & Guo, Q. (2013). Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications,392(18), 4154–4159.CrossRef Liu, J. G., Ren, Z. M., & Guo, Q. (2013). Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications,392(18), 4154–4159.CrossRef
38.
go back to reference Dong, G. G., Gao, J. X., & Du, R. J. (2013). Robustness of network of networks under target attack. Physical Review E,87(5), 28–36.CrossRef Dong, G. G., Gao, J. X., & Du, R. J. (2013). Robustness of network of networks under target attack. Physical Review E,87(5), 28–36.CrossRef
Metadata
Title
Efficient measurement model for critical nodes based on edge clustering coefficients and edge betweenness
Authors
Yu-Jing Deng
Ya-Qian Li
Rong-Rong Yin
He-Yao Zhao
Bin Liu
Publication date
31-05-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02040-4

Other articles of this Issue 4/2020

Wireless Networks 4/2020 Go to the issue