Skip to main content
Top

2025 | OriginalPaper | Chapter

Efficient Moving Object Detection from Ultra-High Resolution Omnidirectional Video

Authors : Takuro Ohashi, Shohei Yokoyama

Published in: Advances in Mobile Computing and Multimedia Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With advancements in panoramic camera technology, resolutions have significantly improved [1], capturing distant objects more clearly. The Insta360 Titan, for instance, supports up to 11k resolution (\(10560\times 5280\)), offering unprecedented detail. However, current object recognition methods struggle with such ultra-high-resolution footage. This paper presents a novel approach for detecting moving objects in 11k panoramic videos from the Insta360 Titan. Our method involves downsampling and background subtraction to detect moving objects quickly and accurately. These regions are then cropped into smaller images for high-precision detection, reducing computational load. This technique, inspired by proxy methods in video editing, maintains result quality while easing processing burdens. Experiments demonstrate our method’s ability to accurately detect humans at distances up to 60 m, achieving 15 fps, thus proving its effectiveness for ultra-high-resolution panoramic footage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blahnik, V., Schindelbeck, O.: Smartphone imaging technology and its applications. Adv. Opt. Technol. 10(3), 145–232 (2021)CrossRef Blahnik, V., Schindelbeck, O.: Smartphone imaging technology and its applications. Adv. Opt. Technol. 10(3), 145–232 (2021)CrossRef
2.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
4.
go back to reference Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. California Institute of Technology (2007) Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. California Institute of Technology (2007)
7.
go back to reference Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1999), vol. 2, pp. 246–252. IEEE (1999) Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1999), vol. 2, pp. 246–252. IEEE (1999)
8.
go back to reference Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 28–31. IEEE (2004) Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 28–31. IEEE (2004)
9.
go back to reference Růžička, V., Franchetti, F.: Fast and accurate object detection in high resolution 4K and 8K video using GPUs. In: 2018 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2018) Růžička, V., Franchetti, F.: Fast and accurate object detection in high resolution 4K and 8K video using GPUs. In: 2018 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2018)
10.
go back to reference Tran, R., Kanaujia, A., Parameswaran, V.: Fast object detection in high-resolution videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1461–1470. IEEE (2023) Tran, R., Kanaujia, A., Parameswaran, V.: Fast object detection in high-resolution videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1461–1470. IEEE (2023)
11.
go back to reference Mattela, G., Tripathi, M., Pal, C., Dhiraj, R.S., Acharyya, A.: An efficient pipeline for distant person detection and identification in 4K video using GPUs. In: Proceedings of the International Conference on Communication Systems & Networks (COMSNETS), pp. 744–749. IEEE (2020) Mattela, G., Tripathi, M., Pal, C., Dhiraj, R.S., Acharyya, A.: An efficient pipeline for distant person detection and identification in 4K video using GPUs. In: Proceedings of the International Conference on Communication Systems & Networks (COMSNETS), pp. 744–749. IEEE (2020)
13.
go back to reference Zhu, H., Wei, H., Li, B., Yuan, X., Kehtarnavaz, N.: Real-time moving object detection in high-resolution video sensing. Sensors 20(12), 3591 (2020)CrossRef Zhu, H., Wei, H., Li, B., Yuan, X., Kehtarnavaz, N.: Real-time moving object detection in high-resolution video sensing. Sensors 20(12), 3591 (2020)CrossRef
14.
go back to reference Nakaizumi, Y., Shishido, H., Kameda, Y.: Video dividing method for high-resolution video regardless of people position. In: Proceedings of Other Conferences (2021) Nakaizumi, Y., Shishido, H., Kameda, Y.: Video dividing method for high-resolution video regardless of people position. In: Proceedings of Other Conferences (2021)
15.
go back to reference Li, Y., Li, J., Lin, W., Li, J.: Tiny-DSOD: lightweight object detection for resource-restricted usages. In: Proceedings of the British Machine Vision Conference (BMVC). BMVA (2018) Li, Y., Li, J., Lin, W., Li, J.: Tiny-DSOD: lightweight object detection for resource-restricted usages. In: Proceedings of the British Machine Vision Conference (BMVC). BMVA (2018)
Metadata
Title
Efficient Moving Object Detection from Ultra-High Resolution Omnidirectional Video
Authors
Takuro Ohashi
Shohei Yokoyama
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78049-3_13

Premium Partner