Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2016

01-08-2016

Efficient simulations of tubulin-driven axonal growth

Authors: Stefan Diehl, Erik Henningsson, Anders Heyden

Published in: Journal of Computational Neuroscience | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work concerns efficient and reliable numerical simulations of the dynamic behaviour of a moving-boundary model for tubulin-driven axonal growth. The model is nonlinear and consists of a coupled set of a partial differential equation (PDE) and two ordinary differential equations. The PDE is defined on a computational domain with a moving boundary, which is part of the solution. Numerical simulations based on standard explicit time-stepping methods are too time consuming due to the small time steps required for numerical stability. On the other hand standard implicit schemes are too complex due to the nonlinear equations that needs to be solved in each step. Instead, we propose to use the Peaceman–Rachford splitting scheme combined with temporal and spatial scalings of the model. Simulations based on this scheme have shown to be efficient, accurate, and reliable which makes it possible to evaluate the model, e.g. its dependency on biological and physical model parameters. These evaluations show among other things that the initial axon growth is very fast, that the active transport is the dominant reason over diffusion for the growth velocity, and that the polymerization rate in the growth cone does not affect the final axon length.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Diehl, S., Henningsson, E., Heyden, A., & Perna, S. (2014). A one-dimensional moving-boundary model for tubulin-driven axonal growth. Journal of Theoretical Biology, 358, 194–207.CrossRefPubMed Diehl, S., Henningsson, E., Heyden, A., & Perna, S. (2014). A one-dimensional moving-boundary model for tubulin-driven axonal growth. Journal of Theoretical Biology, 358, 194–207.CrossRefPubMed
go back to reference Douglas, J. (1955). On the numerical integration of \(\frac {\partial ^{2} u} {\partial x^{2}} + \frac {\partial ^{2} u}{\partial y^{2}} = \frac {\partial u} {\partial t}\) by implicit methods. Journal of the Society for Industrial and Applied Mathematics, 3(1), 42–65.CrossRef Douglas, J. (1955). On the numerical integration of \(\frac {\partial ^{2} u} {\partial x^{2}} + \frac {\partial ^{2} u}{\partial y^{2}} = \frac {\partial u} {\partial t}\) by implicit methods. Journal of the Society for Industrial and Applied Mathematics, 3(1), 42–65.CrossRef
go back to reference García, J.A., Peña, J.M., McHugh, S., & Jérusalem, A. (2012). A model of the spatially dependent mechanical properties of the axon during its growth. CMES – Computer Modeling in Engineering and Sciences, 87 (5), 411–432. García, J.A., Peña, J.M., McHugh, S., & Jérusalem, A. (2012). A model of the spatially dependent mechanical properties of the axon during its growth. CMES – Computer Modeling in Engineering and Sciences, 87 (5), 411–432.
go back to reference Graham, B.P., & van Ooyen, A. (2006). Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neuroscience, 7(Suppl. 1). Graham, B.P., & van Ooyen, A. (2006). Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neuroscience, 7(Suppl. 1).
go back to reference Graham, B.P., Lauchlan, K., & McLean, D.R. (2006). Dynamics of outgrowth in a continuum model of neurite elongation. Journal of Computational Neuroscience, 20(1), 43–60.CrossRefPubMed Graham, B.P., Lauchlan, K., & McLean, D.R. (2006). Dynamics of outgrowth in a continuum model of neurite elongation. Journal of Computational Neuroscience, 20(1), 43–60.CrossRefPubMed
go back to reference Hansen, E., & Henningsson, E. (2013). A convergence analysis of the Peaceman–Rachford scheme for semilinear evolution equations. SIAM Journal on Numerical Analysis, 51(4), 1900– 1910.CrossRef Hansen, E., & Henningsson, E. (2013). A convergence analysis of the Peaceman–Rachford scheme for semilinear evolution equations. SIAM Journal on Numerical Analysis, 51(4), 1900– 1910.CrossRef
go back to reference Hundsdorfer, W., & Verwer, J. (2003). Numerical solution of time-dependent advection-diffusion-reaction equations, Springer series in computational mathematics Vol. 33. New York: Springer. Hundsdorfer, W., & Verwer, J. (2003). Numerical solution of time-dependent advection-diffusion-reaction equations, Springer series in computational mathematics Vol. 33. New York: Springer.
go back to reference Kiddie, G., McLean, D., Ooyen, A.V., & Graham, B. (2005). Biologically plausible models of neurite outgrowth. In van Pelt, J, Kamermans, M, Levelt, C N, van Ooyen, A, Ramakers, G J A, & Roelfsema, P R (Eds.), Development, dynamics and pathiology of neuronal networks: from molecules to functional circuits, progress in brain research, (Vol. 147 pp. 67–80): Elsevier. Kiddie, G., McLean, D., Ooyen, A.V., & Graham, B. (2005). Biologically plausible models of neurite outgrowth. In van Pelt, J, Kamermans, M, Levelt, C N, van Ooyen, A, Ramakers, G J A, & Roelfsema, P R (Eds.), Development, dynamics and pathiology of neuronal networks: from molecules to functional circuits, progress in brain research, (Vol. 147 pp. 67–80): Elsevier.
go back to reference McLean, D.R., & Graham, B.P. (2004). Mathematical formulation and analysis of a continuum model for tubulin-driven neurite elongation. Proceedings Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2048), 2437–2456.CrossRef McLean, D.R., & Graham, B.P. (2004). Mathematical formulation and analysis of a continuum model for tubulin-driven neurite elongation. Proceedings Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2048), 2437–2456.CrossRef
go back to reference McLean, D.R., & Graham, B.P. (2006). Stability in a mathematical model of neurite elongation. Mathematical Medicine and Biology – A Journal of the IMA, 23(2), 101–117.CrossRefPubMed McLean, D.R., & Graham, B.P. (2006). Stability in a mathematical model of neurite elongation. Mathematical Medicine and Biology – A Journal of the IMA, 23(2), 101–117.CrossRefPubMed
go back to reference McLean, D.R., van Ooyen, A., & Graham, B.P. (2004). Continuum model for tubulin-driven neurite elongation. Neurocomputing, 58–60, 511–516.CrossRef McLean, D.R., van Ooyen, A., & Graham, B.P. (2004). Continuum model for tubulin-driven neurite elongation. Neurocomputing, 58–60, 511–516.CrossRef
go back to reference Miller, K.E., & Heidemann, S.R. (2008). What is slow axonal transport? Experimental Cell Research, 314 (10), 1981–1990.CrossRefPubMed Miller, K.E., & Heidemann, S.R. (2008). What is slow axonal transport? Experimental Cell Research, 314 (10), 1981–1990.CrossRefPubMed
go back to reference Peaceman, D.W., & Rachford, H.H. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1), 28–41.CrossRef Peaceman, D.W., & Rachford, H.H. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1), 28–41.CrossRef
go back to reference Sadegh Zadeh, K., & Shah, S.B. (2010). Mathematical modeling and parameter estimation of axonal cargo transport. Journal of Computational Neuroscience, 28(3), 495–507.CrossRef Sadegh Zadeh, K., & Shah, S.B. (2010). Mathematical modeling and parameter estimation of axonal cargo transport. Journal of Computational Neuroscience, 28(3), 495–507.CrossRef
go back to reference van Ooyen, A. (2011). Using theoretical models to analyse neural development. Nature Reviews Neuroscience, 12(6), 311– 326.CrossRefPubMed van Ooyen, A. (2011). Using theoretical models to analyse neural development. Nature Reviews Neuroscience, 12(6), 311– 326.CrossRefPubMed
go back to reference Walker, R.A., O’Brien, E.T., Pryer, N.K., Soboeiro, M.F., Voter, W.A., Erickson, H.P., & Salmon, E.D. (1988). Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. Journal of Cell Biology, 107(4), 1437–1448. Walker, R.A., O’Brien, E.T., Pryer, N.K., Soboeiro, M.F., Voter, W.A., Erickson, H.P., & Salmon, E.D. (1988). Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. Journal of Cell Biology, 107(4), 1437–1448.
Metadata
Title
Efficient simulations of tubulin-driven axonal growth
Authors
Stefan Diehl
Erik Henningsson
Anders Heyden
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2016
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0604-x

Other articles of this Issue 1/2016

Journal of Computational Neuroscience 1/2016 Go to the issue

Premium Partner