Skip to main content
Top
Published in: Quantum Information Processing 4/2019

01-04-2019

Efficiently embedding QUBO problems on adiabatic quantum computers

Authors: Prasanna Date, Robert Patton, Catherine Schuman, Thomas Potok

Published in: Quantum Information Processing | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Adiabatic quantum computers like the D-Wave 2000Q can approximately solve the QUBO problem, which is an NP-hard problem, and have been shown to outperform classical computers on several instances. Solving the QUBO problem literally means solving virtually any NP-hard problem like the traveling salesman problem, airline scheduling problem, protein folding problem, genotype imputation problem, thereby enabling significant scientific progress, and potentially saving millions/billions of dollars in logistics, airlines, healthcare and many other industries. However, before QUBO problems are solved on quantum computers, they must be embedded (or compiled) onto the hardware of quantum computers, which in itself is a very hard problem. In this work, we propose an efficient embedding algorithm, that lets us embed QUBO problems fast, uses less qubits and gets the objective function value close to the global minimum value. We then compare the performance of our embedding algorithm to that of D-Wave’s embedding algorithm, which is the current state of the art, and show that our embedding algorithm convincingly outperforms D-Wave’s embedding algorithm. Our embedding approach works with perfect Chimera graphs, i.e., Chimera graphs with no missing qubits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adachi, S.H., Davenport, D.M., Henderson, M.P.: Quantum-assisted training of neural networks. US Patent App. 14/702,203 (2015) Adachi, S.H., Davenport, D.M., Henderson, M.P.: Quantum-assisted training of neural networks. US Patent App. 14/702,203 (2015)
3.
go back to reference Amin, M.H.: Methods of adiabatic quantum computation. US Patent 8,504,497 (2013) Amin, M.H.: Methods of adiabatic quantum computation. US Patent 8,504,497 (2013)
4.
go back to reference Amin, M.H., Steininger, M.F.: Adiabatic quantum computation with superconducting qubits. US Patent 7,135,701 (2006) Amin, M.H., Steininger, M.F.: Adiabatic quantum computation with superconducting qubits. US Patent 7,135,701 (2006)
5.
go back to reference Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)MATH Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)MATH
6.
go back to reference Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534(7606), 222 (2016)ADSCrossRef Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534(7606), 222 (2016)ADSCrossRef
7.
go back to reference Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-time Systems. Springer, Berlin (2015)MATHCrossRef Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-time Systems. Springer, Berlin (2015)MATHCrossRef
8.
go back to reference Biamonte, J.D., Berkley, A.J., Amin, M.: Physical realizations of a universal adiabatic quantum computer. US Patent 8,234,103 (2012) Biamonte, J.D., Berkley, A.J., Amin, M.: Physical realizations of a universal adiabatic quantum computer. US Patent 8,234,103 (2012)
9.
go back to reference Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Front. ICT 3, 14 (2016)CrossRef Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Front. ICT 3, 14 (2016)CrossRef
10.
go back to reference Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving sat and maxsat with a quantum annealer: foundations and a preliminary report. In: International Symposium on Frontiers of Combining Systems, pp. 153–171. Springer, Berlin (2017) Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving sat and maxsat with a quantum annealer: foundations and a preliminary report. In: International Symposium on Frontiers of Combining Systems, pp. 153–171. Springer, Berlin (2017)
11.
go back to reference Blum, A., Rivest, R.L.: Training a 3-node neural network is NP-complete. In: Advances in Neural Information Processing Systems, pp. 494–501 (1989) Blum, A., Rivest, R.L.: Training a 3-node neural network is NP-complete. In: Advances in Neural Information Processing Systems, pp. 494–501 (1989)
12.
go back to reference Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)ADSMathSciNetMATHCrossRef Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)ADSMathSciNetMATHCrossRef
13.
go back to reference Britt, K.A., Humble, T.S.: High-performance computing with quantum processing units. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 39 (2017) Britt, K.A., Humble, T.S.: High-performance computing with quantum processing units. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 39 (2017)
15.
16.
go back to reference Chickering, D.M., Geiger, D., Heckerman, D., et al.: Learning Bayesian networks is NP-hard. Technical Report, Citeseer (1994) Chickering, D.M., Geiger, D., Heckerman, D., et al.: Learning Bayesian networks is NP-hard. Technical Report, Citeseer (1994)
17.
go back to reference Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)MathSciNetMATHCrossRef Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)MathSciNetMATHCrossRef
18.
go back to reference Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetMATHCrossRef Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetMATHCrossRef
19.
go back to reference Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, New York (1971) Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, New York (1971)
20.
go back to reference Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)MATHCrossRef Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)MATHCrossRef
21.
go back to reference Dasgupta, S.: The hardness of \(k\)-means clustering. Department of Computer Science and Engineering, University of California, San Diego (2008) Dasgupta, S.: The hardness of \(k\)-means clustering. Department of Computer Science and Engineering, University of California, San Diego (2008)
22.
go back to reference Dill, K.A., MacCallum, J.L.: The protein-folding problem, 50 years on. Science 338(6110), 1042–1046 (2012)ADSCrossRef Dill, K.A., MacCallum, J.L.: The protein-folding problem, 50 years on. Science 338(6110), 1042–1046 (2012)ADSCrossRef
23.
go back to reference Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-sat formulae. IJCAI 1, 248–253 (2001) Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-sat formulae. IJCAI 1, 248–253 (2001)
24.
go back to reference Esteve, D., Vion, D., Devoret, M., Urbina, C., Joyez, P., Pothier, H., Orfila, P.F., Aassime, A., Cottet, A.: Superconducting quantum-bit device based on josephson junctions. US Patent 6,838,694 (2005) Esteve, D., Vion, D., Devoret, M., Urbina, C., Joyez, P., Pothier, H., Orfila, P.F., Aassime, A., Cottet, A.: Superconducting quantum-bit device based on josephson junctions. US Patent 6,838,694 (2005)
25.
go back to reference Etschmaier, M.M., Mathaisel, D.F.: Airline scheduling: an overview. Transp. Sci. 19(2), 127–138 (1985)CrossRef Etschmaier, M.M., Mathaisel, D.F.: Airline scheduling: an overview. Transp. Sci. 19(2), 127–138 (1985)CrossRef
26.
go back to reference Goodrich, T.D., Sullivan, B.D., Humble, T.S.: Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Inf. Process. 17(5), 118 (2018)MathSciNetMATHCrossRef Goodrich, T.D., Sullivan, B.D., Humble, T.S.: Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Inf. Process. 17(5), 118 (2018)MathSciNetMATHCrossRef
27.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996)
28.
go back to reference Hamilton, K.E., Humble, T.S.: Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets. Quantum Inf. Process. 16(4), 94 (2017)ADSMathSciNetMATHCrossRef Hamilton, K.E., Humble, T.S.: Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets. Quantum Inf. Process. 16(4), 94 (2017)ADSMathSciNetMATHCrossRef
29.
go back to reference Huang, W., Yu, J.X.: Investigating TSP heuristics for location-based services. Data Sci. Eng. 2(1), 71–93 (2017)ADSCrossRef Huang, W., Yu, J.X.: Investigating TSP heuristics for location-based services. Data Sci. Eng. 2(1), 71–93 (2017)ADSCrossRef
30.
go back to reference Imamog, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)ADSCrossRef Imamog, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)ADSCrossRef
31.
go back to reference Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133 (1998)ADSCrossRef Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133 (1998)ADSCrossRef
32.
go back to reference Keating, T., Goyal, K., Jau, Y.Y., Biedermann, G.W., Landahl, A.J., Deutsch, I.H.: Adiabatic quantum computation with Rydberg-dressed atoms. Phys. Rev. A 87(5), 052314 (2013)ADSCrossRef Keating, T., Goyal, K., Jau, Y.Y., Biedermann, G.W., Landahl, A.J., Deutsch, I.H.: Adiabatic quantum computation with Rydberg-dressed atoms. Phys. Rev. A 87(5), 052314 (2013)ADSCrossRef
33.
go back to reference King, A.D., Israel, R.B., Bunyk, P.I., Boothby, T.J., Reinhardt, S.P., Roy, A.P., King, J.A., Lanting, T.M., Evert, A.J.: Systems and methods for embedding problems into an analog processor. US Patent App. 15/487,295 (2017) King, A.D., Israel, R.B., Bunyk, P.I., Boothby, T.J., Reinhardt, S.P., Roy, A.P., King, J.A., Lanting, T.M., Evert, A.J.: Systems and methods for embedding problems into an analog processor. US Patent App. 15/487,295 (2017)
34.
go back to reference Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education India, Noida (2006) Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education India, Noida (2006)
35.
go back to reference Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)ADSMathSciNetMATHCrossRef Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)ADSMathSciNetMATHCrossRef
36.
go back to reference Landahl, A.: Adiabatic quantum computing. In: APS Four Corners Section Meeting Abstracts (2012) Landahl, A.: Adiabatic quantum computing. In: APS Four Corners Section Meeting Abstracts (2012)
37.
go back to reference Lewis, M., Glover, F.: Quadratic unconstrained binary optimization problem preprocessing: theory and empirical analysis. Networks 70(2), 79–97 (2017)MathSciNetCrossRef Lewis, M., Glover, F.: Quadratic unconstrained binary optimization problem preprocessing: theory and empirical analysis. Networks 70(2), 79–97 (2017)MathSciNetCrossRef
38.
go back to reference Li, Y., Willer, C., Sanna, S., Abecasis, G.: Genotype imputation. Ann. Rev. Genom. Hum. Genet. 10, 387–406 (2009)CrossRef Li, Y., Willer, C., Sanna, S., Abecasis, G.: Genotype imputation. Ann. Rev. Genom. Hum. Genet. 10, 387–406 (2009)CrossRef
39.
go back to reference Macready, W., Roy, A.P.: Systems and methods that formulate problems for solving by a quantum processor using hardware graph decomposition. US Patent 9,875,215 (2018) Macready, W., Roy, A.P.: Systems and methods that formulate problems for solving by a quantum processor using hardware graph decomposition. US Patent 9,875,215 (2018)
40.
go back to reference Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. AAPT (2002) Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. AAPT (2002)
41.
go back to reference Papadimitriou, C.H.: Computational Complexity. Wiley, London (2003)MATH Papadimitriou, C.H.: Computational Complexity. Wiley, London (2003)MATH
42.
go back to reference Pittman, T., Jacobs, B., Franson, J.: Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64(6), 062311 (2001)ADSCrossRef Pittman, T., Jacobs, B., Franson, J.: Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64(6), 062311 (2001)ADSCrossRef
43.
go back to reference Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489(7417), 541 (2012)ADSCrossRef Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489(7417), 541 (2012)ADSCrossRef
44.
go back to reference Potok, T.E., Schuman, C.D., Young, S.R., Patton, R.M., Spedalieri, F., Liu, J., Yao, K.T., Rose, G., Chakma, G.: A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. In: Workshop on Machine Learning in HPC Environments (MLHPC), pp. 47–55. IEEE, New York (2016) Potok, T.E., Schuman, C.D., Young, S.R., Patton, R.M., Spedalieri, F., Liu, J., Yao, K.T., Rose, G., Chakma, G.: A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. In: Workshop on Machine Learning in HPC Environments (MLHPC), pp. 47–55. IEEE, New York (2016)
45.
go back to reference Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)ADSMATHCrossRef Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)ADSMATHCrossRef
46.
go back to reference Roy, A.P.: Systems and methods that formulate embeddings of problems for solving by a quantum processor. US Patent 9,501,747 (2016) Roy, A.P.: Systems and methods that formulate embeddings of problems for solving by a quantum processor. US Patent 9,501,747 (2016)
47.
go back to reference Shmygelska, A., Hoos, H.H.: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformat. 6(1), 30 (2005)CrossRef Shmygelska, A., Hoos, H.H.: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformat. 6(1), 30 (2005)CrossRef
48.
go back to reference Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 1994 Proceedings., 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, New York (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 1994 Proceedings., 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, New York (1994)
49.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)ADSMathSciNetMATHCrossRef Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)ADSMathSciNetMATHCrossRef
50.
go back to reference Thom, M.C., Roy, A.P., Chudak, F.A., Bian, Z., Macready, W.G., Israel, R.B., Boothby, T.J., Yarkoni, S., Xue, Y., Korenkevych, D., et al.: Systems and methods for analog processing of problem graphs having arbitrary size and/or connectivity. US Patent App. 15/448,361 (2017) Thom, M.C., Roy, A.P., Chudak, F.A., Bian, Z., Macready, W.G., Israel, R.B., Boothby, T.J., Yarkoni, S., Xue, Y., Korenkevych, D., et al.: Systems and methods for analog processing of problem graphs having arbitrary size and/or connectivity. US Patent App. 15/448,361 (2017)
51.
go back to reference Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. a correction. Proc. Lond. Math. Soc. 2(1), 544–546 (1938)MathSciNetMATHCrossRef Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. a correction. Proc. Lond. Math. Soc. 2(1), 544–546 (1938)MathSciNetMATHCrossRef
52.
go back to reference Venturelli, D., Mandra, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully connected spin glasses. Phys. Rev. X 5(3), 031040 (2015) Venturelli, D., Mandra, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully connected spin glasses. Phys. Rev. X 5(3), 031040 (2015)
53.
go back to reference Zagoskin, A.M.: Qubit using a josephson junction between s-wave and d-wave superconductors. US Patent 6,459,097 (2002) Zagoskin, A.M.: Qubit using a josephson junction between s-wave and d-wave superconductors. US Patent 6,459,097 (2002)
54.
go back to reference Zagoskin, A.M.: Quantum computing method using magnetic flux states at a Josephson junction. US Patent 6,563,311 (2003) Zagoskin, A.M.: Quantum computing method using magnetic flux states at a Josephson junction. US Patent 6,563,311 (2003)
55.
go back to reference Zaribafiyan, A., Marchand, D., REZAEI, S.S.C.: Method and system for generating an embedding pattern used for solving a quadratic binary optimization problem. US Patent App. 15/344,054 (2017) Zaribafiyan, A., Marchand, D., REZAEI, S.S.C.: Method and system for generating an embedding pattern used for solving a quadratic binary optimization problem. US Patent App. 15/344,054 (2017)
Metadata
Title
Efficiently embedding QUBO problems on adiabatic quantum computers
Authors
Prasanna Date
Robert Patton
Catherine Schuman
Thomas Potok
Publication date
01-04-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 4/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2236-3

Other articles of this Issue 4/2019

Quantum Information Processing 4/2019 Go to the issue