Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Effiziente Oberflächenmodellierung für die additive Fertigung von Prototypen für akustische Metamaterialien

Authors: Duo Xu, Diana Grill, Yilun Sun, Anand Vazhapilli Sureshbabu, Martin Eser, Tim C. Lüth, Markus Zimmermann

Published in: Konstruktion für die Additive Fertigung 2020

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Während herkömmliche Ansätze zur Minderung von Störgeräuschen oft mit einer Erhöhung der Masse einhergehen, realisieren akustische Metamaterialien (AMM) eine hohe Geräuschabsorption bei gleichzeitig guten Leichtbaueigenschaften. Die Erzeugung der Gitterstruktur des AMMs mit konventionellen Konstruktionsmethoden ist jedoch mit großem Aufwand verbunden. In dieser Arbeit wurde ein AMM mittels Oberflächenmodellierung konstruiert und mit einem additiven Fertigungsverfahren hergestellt.
Bei der Konstruktion wird die Matlab-Toolbox „Solid Geometry Library Toolbox“ verwendet, wobei die Objekterzeugung auf Befehlen der Programmiersprache SG Coding basiert und die Körper vollständig durch die Menge ihrer ebenen Oberflächen beschrieben werden. Dadurch wird der Konstruktionsaufwand deutlich reduziert. Zudem lassen sich die Modelle direkt in STL-Dateien konvertieren und bei der additiven Fertigung verwenden.
Um die feinen Gitterstrukturen mit hoher Genauigkeit herzustellen, wird das Stereolithografie-Verfahren verwendet. Durch die Kombination der Objektmodellierung mittels der Solid Geometry Library Toolbox und Stereolithografie konnte der Aufwand für die Konzeption und das Prototyping von AMM stark reduziert werden.
Literature
1.
go back to reference Claeys, C.: Design and analysis of resonant metamaterials for acoustic insulation. Diss. Ph. D. dissertation, KU Leuven, Leuven (2014) Claeys, C.: Design and analysis of resonant metamaterials for acoustic insulation. Diss. Ph. D. dissertation, KU Leuven, Leuven (2014)
3.
go back to reference Deymier, P.A. (Hrsg.): Acoustic Metamaterials and Phononic Crystals, Bd. 173. Springer Science & Business Media, Berlin (2013) Deymier, P.A. (Hrsg.): Acoustic Metamaterials and Phononic Crystals, Bd. 173. Springer Science & Business Media, Berlin (2013)
4.
go back to reference Liu, Z., et al.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000) CrossRef Liu, Z., et al.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000) CrossRef
5.
go back to reference Narayanamurti, V., et al.: Selective transmission of high-frequency phonons by a superlattice: the „dielectric“ phonon filter. Phys. Rev. Lett. 43(27), 2012 (1979) CrossRef Narayanamurti, V., et al.: Selective transmission of high-frequency phonons by a superlattice: the „dielectric“ phonon filter. Phys. Rev. Lett. 43(27), 2012 (1979) CrossRef
6.
go back to reference Yang, Z., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101(20), 204301 (2008) CrossRef Yang, Z., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101(20), 204301 (2008) CrossRef
7.
go back to reference Naify, C.J., et al.: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 108(11), 114905 (2010) CrossRef Naify, C.J., et al.: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 108(11), 114905 (2010) CrossRef
8.
go back to reference Wang, X., et al.: Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl. Phys. Lett. 108(4), 041905 (2016) CrossRef Wang, X., et al.: Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl. Phys. Lett. 108(4), 041905 (2016) CrossRef
9.
go back to reference Langfeldt, F., et al.: Perforated membrane-type acoustic metamaterials. Phys. Lett. A. 381(16), 1457–1462 (2017) CrossRef Langfeldt, F., et al.: Perforated membrane-type acoustic metamaterials. Phys. Lett. A. 381(16), 1457–1462 (2017) CrossRef
10.
go back to reference Zhang, Y., et al.: Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials. Phys. Lett. A. 376(17), 1489–1494 (2012) CrossRef Zhang, Y., et al.: Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials. Phys. Lett. A. 376(17), 1489–1494 (2012) CrossRef
11.
go back to reference Chen, Y., et al.: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model. J. Acoust. Soc. Am. 136(3), 969–979 (2014) CrossRef Chen, Y., et al.: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model. J. Acoust. Soc. Am. 136(3), 969–979 (2014) CrossRef
12.
go back to reference Langfeldt, F., Gleine, W.V., Von Estorff, O.: Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. J. Sound Vib. 349, 315–329 (2015) CrossRef Langfeldt, F., Gleine, W.V., Von Estorff, O.: Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. J. Sound Vib. 349, 315–329 (2015) CrossRef
13.
go back to reference Langfeldt, F., Gleine, W., Von Estorff, O.: An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels. J. Sound Vib. 417, 359–375 (2018) CrossRef Langfeldt, F., Gleine, W., Von Estorff, O.: An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels. J. Sound Vib. 417, 359–375 (2018) CrossRef
14.
go back to reference Langfeldt, F.: Membrane-type acoustic metamaterials for aircraft noise shields. Diss. Technische Universität Hamburg (2018) Langfeldt, F.: Membrane-type acoustic metamaterials for aircraft noise shields. Diss. Technische Universität Hamburg (2018)
15.
go back to reference Wang, X., et al.: Plate-type metamaterials for extremely broadband low-frequency sound insulation. Int. J. Mod. Phys. B. 32(03), 1850019 (2018) CrossRef Wang, X., et al.: Plate-type metamaterials for extremely broadband low-frequency sound insulation. Int. J. Mod. Phys. B. 32(03), 1850019 (2018) CrossRef
16.
go back to reference Ma, F., Huang, M., Wu, J.H.: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant. J. Appl. Phys. 121(1), 015102 (2017) CrossRef Ma, F., Huang, M., Wu, J.H.: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant. J. Appl. Phys. 121(1), 015102 (2017) CrossRef
17.
go back to reference Ma, F., Huang, M., Wu, J.H.: Acoustic metamaterials with synergetic coupling. J. Appl. Phys. 122(21), 215102 (2017) CrossRef Ma, F., Huang, M., Wu, J.H.: Acoustic metamaterials with synergetic coupling. J. Appl. Phys. 122(21), 215102 (2017) CrossRef
18.
go back to reference Ma, F., et al.: Bi-layer plate-type acoustic metamaterials with Willis coupling. J. Appl. Phys. 123(3), 035104 (2018) CrossRef Ma, F., et al.: Bi-layer plate-type acoustic metamaterials with Willis coupling. J. Appl. Phys. 123(3), 035104 (2018) CrossRef
19.
go back to reference Ang, L.Y.L., Koh, Y.K., Lee, H.P.: Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss. Appl. Phys. Lett. 112(5), 051903 (2018) CrossRef Ang, L.Y.L., Koh, Y.K., Lee, H.P.: Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss. Appl. Phys. Lett. 112(5), 051903 (2018) CrossRef
20.
go back to reference Wang, X., et al.: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. J. Sound Vib. 459, 114867 (2019) CrossRef Wang, X., et al.: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. J. Sound Vib. 459, 114867 (2019) CrossRef
21.
go back to reference Ryoo, H., Jeon, W.: Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence. J. Appl. Phys. 123(11), 115110 (2018) CrossRef Ryoo, H., Jeon, W.: Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence. J. Appl. Phys. 123(11), 115110 (2018) CrossRef
22.
go back to reference Ryoo, H., Jeon, W.: Perfect sound absorption of ultra-thin metasurface based on hybrid resonance and space-coiling. Appl. Phys. Lett. 113(12), 121903 (2018) CrossRef Ryoo, H., Jeon, W.: Perfect sound absorption of ultra-thin metasurface based on hybrid resonance and space-coiling. Appl. Phys. Lett. 113(12), 121903 (2018) CrossRef
23.
go back to reference Li, Y., Assouar, B.M.: Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108(6), 063502 (2016) CrossRef Li, Y., Assouar, B.M.: Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108(6), 063502 (2016) CrossRef
24.
go back to reference Tang, Y., et al.: Deep subwavelength acoustic metamaterial for low-frequency sound absorption. Europhys. Lett. 118(4), 44002 (2017) CrossRef Tang, Y., et al.: Deep subwavelength acoustic metamaterial for low-frequency sound absorption. Europhys. Lett. 118(4), 44002 (2017) CrossRef
25.
go back to reference Tang, Y., et al.: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci. Rep. 7, 43340 (2017) CrossRef Tang, Y., et al.: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci. Rep. 7, 43340 (2017) CrossRef
26.
go back to reference Romero-García, V., et al.: Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016) CrossRef Romero-García, V., et al.: Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016) CrossRef
27.
go back to reference Jiménez, N., et al.: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109(12), 121902 (2016) CrossRef Jiménez, N., et al.: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109(12), 121902 (2016) CrossRef
28.
go back to reference Cai, X., et al.: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105(12), 121901 (2014) CrossRef Cai, X., et al.: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105(12), 121901 (2014) CrossRef
29.
go back to reference Zhang, C., Xinhua, H.: Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Phys. Rev. Appl. 6(6), 064025 (2016) CrossRef Zhang, C., Xinhua, H.: Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Phys. Rev. Appl. 6(6), 064025 (2016) CrossRef
30.
go back to reference Wang, Y., et al.: A tunable sound-absorbing metamaterial based on coiled-up space. J. Appl. Phys. 123(18), 185109 (2018) CrossRef Wang, Y., et al.: A tunable sound-absorbing metamaterial based on coiled-up space. J. Appl. Phys. 123(18), 185109 (2018) CrossRef
31.
go back to reference Groby, J.-P., et al.: Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions. J. Acoust. Soc. Am. 130(6), 3771–3780 (2011) CrossRef Groby, J.-P., et al.: Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions. J. Acoust. Soc. Am. 130(6), 3771–3780 (2011) CrossRef
32.
go back to reference Lagarrigue, C., et al.: Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134(6), 4670–4680 (2013) CrossRef Lagarrigue, C., et al.: Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134(6), 4670–4680 (2013) CrossRef
33.
go back to reference Groby, J.-P., et al.: Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators. J. Acoust. Soc. Am. 137(1), 273–280 (2015) CrossRef Groby, J.-P., et al.: Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators. J. Acoust. Soc. Am. 137(1), 273–280 (2015) CrossRef
34.
go back to reference Groby, J.-P., et al.: Using simple shape three-dimensional rigid inclusions to enhance porous layer absorption. J. Acoust. Soc. Am. 136(3), 1139–1148 (2014) CrossRef Groby, J.-P., et al.: Using simple shape three-dimensional rigid inclusions to enhance porous layer absorption. J. Acoust. Soc. Am. 136(3), 1139–1148 (2014) CrossRef
35.
go back to reference Lagarrigue, C., et al.: Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band. Appl. Acoust. 102, 49–54 (2016) CrossRef Lagarrigue, C., et al.: Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band. Appl. Acoust. 102, 49–54 (2016) CrossRef
36.
go back to reference Chang, K.-J., et al.: An application of acoustic metamaterial for reducing noise transfer through car body panels. No. 2018-01-1566. SAE Technical Paper (2018) Chang, K.-J., et al.: An application of acoustic metamaterial for reducing noise transfer through car body panels. No. 2018-01-1566. SAE Technical Paper (2018)
37.
go back to reference Jung, J., et al.: Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mech. Syst. Signal Process. 122, 206–231 (2019) CrossRef Jung, J., et al.: Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mech. Syst. Signal Process. 122, 206–231 (2019) CrossRef
38.
go back to reference Liu, Z., et al.: Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys. Rev. B. 62(4), 2446 (2000) CrossRef Liu, Z., et al.: Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys. Rev. B. 62(4), 2446 (2000) CrossRef
39.
go back to reference Rocha de Melo Filho, Noé Geraldo, et al.: On the use of the dynamic mass of metamaterials to calculate the transmission loss based on the acoustic mass law. 13th International Conference on Theoretical and Computational Acoustics, ICTCA 2017. Vol. 2017, Wien (2017) Rocha de Melo Filho, Noé Geraldo, et al.: On the use of the dynamic mass of metamaterials to calculate the transmission loss based on the acoustic mass law. 13th International Conference on Theoretical and Computational Acoustics, ICTCA 2017. Vol. 2017, Wien (2017)
40.
go back to reference Flanagan, L., Rice, H., Trimble, D., Dowling, L., Kennedy, J.: The use of a benchmark periodic metamaterial to inform numerical modelling and additive manufacturing approaches. In Proceedings of ISMA2018 Including USD2018. Leuven, Belgium; September (2018) Flanagan, L., Rice, H., Trimble, D., Dowling, L., Kennedy, J.: The use of a benchmark periodic metamaterial to inform numerical modelling and additive manufacturing approaches. In Proceedings of ISMA2018 Including USD2018. Leuven, Belgium; September (2018)
41.
go back to reference Lueth, T.C., Irlinger, F.: Berechnete Erzeugung von dreidimensionalen Oberflächenmodellen im STL-Format aus der Beschreibung planarer Mechanismen für die generative Fertigung durch selektives Lasersintern. Kolloquium Getriebetechnik: 10. Kolloquium Getriebetechnik. Universitätsverlag, Ilmenau (2013) Lueth, T.C., Irlinger, F.: Berechnete Erzeugung von dreidimensionalen Oberflächenmodellen im STL-Format aus der Beschreibung planarer Mechanismen für die generative Fertigung durch selektives Lasersintern. Kolloquium Getriebetechnik: 10. Kolloquium Getriebetechnik. Universitätsverlag, Ilmenau (2013)
42.
go back to reference Lueth, T.C.: SG-Library: Entwicklung einer konstruktiven MATLAB-Toolbox zur räumlichen Modellierung von Körpern, Gelenken und Getrieben. 11. Kolloquium Getriebetechnik, München (2015) Lueth, T.C.: SG-Library: Entwicklung einer konstruktiven MATLAB-Toolbox zur räumlichen Modellierung von Körpern, Gelenken und Getrieben. 11. Kolloquium Getriebetechnik, München (2015)
44.
go back to reference Amado-Mendes, P., et al.: A numerical study on the behavior of partition panels with micro-resonator-type metamaterials. FIA 2018/TecniAcustica 2018 (2018) Amado-Mendes, P., et al.: A numerical study on the behavior of partition panels with micro-resonator-type metamaterials. FIA 2018/TecniAcustica 2018 (2018)
45.
go back to reference Claeys, C., et al.: A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation. Mech. Syst. Signal Process 70, 853–880 (2016) Claeys, C., et al.: A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation. Mech. Syst. Signal Process 70, 853–880 (2016)
46.
go back to reference Standard, S.R.: EN ISO 10534-2, Determination of sound absorption coefficient and acoustic impedance with the interferometer. Deutsches Institut für Normungen (2001) Standard, S.R.: EN ISO 10534-2, Determination of sound absorption coefficient and acoustic impedance with the interferometer. Deutsches Institut für Normungen (2001)
47.
go back to reference Müller, G., Möser, M. (Hrsg.): Handbook of Engineering Acoustics. Springer Science & Business Media, München (2012) Müller, G., Möser, M. (Hrsg.): Handbook of Engineering Acoustics. Springer Science & Business Media, München (2012)
Metadata
Title
Effiziente Oberflächenmodellierung für die additive Fertigung von Prototypen für akustische Metamaterialien
Authors
Duo Xu
Diana Grill
Yilun Sun
Anand Vazhapilli Sureshbabu
Martin Eser
Tim C. Lüth
Markus Zimmermann
Copyright Year
2021
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-63030-3_3

Premium Partners