Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Einsatz additiver Fertigungsverfahren für die Bauteilreparatur: Ein literaturbasierter Überblick

Authors: Nicola Ganter, Paul Christoph Gembarski, Roland Lachmayer

Published in: Konstruktion für die Additive Fertigung 2020

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Viele Bauteile erreichen aufgrund eingeschränkter Möglichkeiten zur Wartung und Instandhaltung vorzeitig ihr End-of-Life. Additive Fertigungsverfahren bieten jedoch die Möglichkeit, Bauteile zu reparieren, die bisher als nicht reparabel galten. Weiterhin können Bauteile in der additiven Reparatur optimiert werden, sodass z. B. das Wartungsintervall bzw. die Standzeit verlängert wird. Zur Aufbereitung bestimmter Bauteile, bspw. Turbinenschaufeln, werden einzelne additive Verfahren bereits eingesetzt. Neben diesen wenigen Beispielen fehlt es jedoch an Informationen, für welche Schäden und Bauteile additive Verfahren sinnvoll eingesetzt werden können und welche Verfahren sowie technologischen Prozessketten dies im konkreten sind. Dieser Beitrag gibt einen literaturbasierten Überblick über den bisherigen Einsatz additiver Fertigungsverfahren zur Bauteilreparatur. Es wird dargestellt, welche additiven Verfahren für Additive Repair eingesetzt werden und für welche Reparaturaufgaben Additive Repair angewendet wird. Darauf basierend wird abgeleitet, welche Bauteilmerkmale zur Beurteilung der technischen Machbarkeit von Additive Repair betrachtet werden müssen.
Literature
1.
go back to reference VDI Gesellschaft Produktion und Logistik: VDI 3405 – Additive manufacturing processes, rapid manufacturing – Basics, definitions, processes. VDI Handbuch, Berlin (2014) VDI Gesellschaft Produktion und Logistik: VDI 3405 – Additive manufacturing processes, rapid manufacturing – Basics, definitions, processes. VDI Handbuch, Berlin (2014)
2.
go back to reference Zghair, Y.: Rapid repair hochwertiger Investitionsgüter. In: 3D-Druck beleuchtet. Springer Vieweg, Berlin/Heidelberg (2016) Zghair, Y.: Rapid repair hochwertiger Investitionsgüter. In: 3D-Druck beleuchtet. Springer Vieweg, Berlin/Heidelberg (2016)
3.
go back to reference Gasser, A., Backes, G., Kelbassa, I., Weisheit, A., Wissenbach, K.: Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Tech. J. 7(2), 58 (2010) CrossRef Gasser, A., Backes, G., Kelbassa, I., Weisheit, A., Wissenbach, K.: Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Tech. J. 7(2), 58 (2010) CrossRef
4.
go back to reference Bremer, C.: Automated repair and overhaul of aero-engine and industrial gas turbine components. In: Turbo Expo: Power for Land, Sea, and Air Bd. 2, Turbo Expo, Nevada, USA (2005) Bremer, C.: Automated repair and overhaul of aero-engine and industrial gas turbine components. In: Turbo Expo: Power for Land, Sea, and Air Bd. 2, Turbo Expo, Nevada, USA (2005)
5.
go back to reference Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F., Ramani, K.: Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 80, 170–178 (2014) CrossRef Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F., Ramani, K.: Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 80, 170–178 (2014) CrossRef
6.
go back to reference Wahab, D.A., Azman, A.H.: Additive manufacturing for repair and restoration in remanufacturing: an overview from object design and systems perspectives. Processes. 7(11), 802 (2019) CrossRef Wahab, D.A., Azman, A.H.: Additive manufacturing for repair and restoration in remanufacturing: an overview from object design and systems perspectives. Processes. 7(11), 802 (2019) CrossRef
7.
go back to reference Brinker, J., Gembarski, P.C., Hagen, S., Thomas, O.: Anwendungspotenziale von Additive Repair und Refurbishment für Service-orientierte Geschäftsmodelle. In: Konstruktion für die Additive Fertigung 2019. Springer Vieweg, Berlin/Heidelberg (2020) Brinker, J., Gembarski, P.C., Hagen, S., Thomas, O.: Anwendungspotenziale von Additive Repair und Refurbishment für Service-orientierte Geschäftsmodelle. In: Konstruktion für die Additive Fertigung 2019. Springer Vieweg, Berlin/Heidelberg (2020)
8.
go back to reference Nyamekye, P., Leino, M., Piili, H., Salminen, A.: Overview of sustainability studies of CNC machining and LAM of stainless steel. Phys. Procedia. 78, 367 (2015) CrossRef Nyamekye, P., Leino, M., Piili, H., Salminen, A.: Overview of sustainability studies of CNC machining and LAM of stainless steel. Phys. Procedia. 78, 367 (2015) CrossRef
9.
go back to reference Varwig, A., Kammler, F., Thomas, O.: Geschäftsmodellevolution im Technischen Kundendienst des Maschinen- und Anlangenbaus durch additive Fertigung – Ersatzteilbereitstellung als smart Service. In: Lachmayer, R., Lippert, R. (Hrsg.) Additive Manufacturing Quantifiziert. Springer Vieweg, Berlin/Heidelberg (2017) Varwig, A., Kammler, F., Thomas, O.: Geschäftsmodellevolution im Technischen Kundendienst des Maschinen- und Anlangenbaus durch additive Fertigung – Ersatzteilbereitstellung als smart Service. In: Lachmayer, R., Lippert, R. (Hrsg.) Additive Manufacturing Quantifiziert. Springer Vieweg, Berlin/Heidelberg (2017)
10.
go back to reference Leino, M., Pekkarinen, J., Soukka, R.: The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing – enabling circular economy. Phys. Procedia. 83, 752 (2016) Leino, M., Pekkarinen, J., Soukka, R.: The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing – enabling circular economy. Phys. Procedia. 83, 752 (2016)
11.
go back to reference Wasono, R.S., Wahab, D., Azman, A.: Additive manufacturing for repair and restoration in remanufacturing: an overview from object design and systems perspectives. Processes. 7, 802 (2019) CrossRef Wasono, R.S., Wahab, D., Azman, A.: Additive manufacturing for repair and restoration in remanufacturing: an overview from object design and systems perspectives. Processes. 7, 802 (2019) CrossRef
12.
go back to reference Yeo, N.C.Y., Pepin, H., Yang, S.S.: Revolutionizing technology adoption for the remanufacturing industry. Procedia CIRP. 61, 17 (2017) CrossRef Yeo, N.C.Y., Pepin, H., Yang, S.S.: Revolutionizing technology adoption for the remanufacturing industry. Procedia CIRP. 61, 17 (2017) CrossRef
13.
go back to reference Zghair, Y.A., Leuteritz, G.: Additive Repair von Multimaterialsystemen im Selektiven Laserstrahlschmelzen. In: Lachmayer, R., Lippert, R. (Hrsg.) Additive Manufacturing Quantifiziert. Springer Vieweg, Berlin/Heidelberg (2017) Zghair, Y.A., Leuteritz, G.: Additive Repair von Multimaterialsystemen im Selektiven Laserstrahlschmelzen. In: Lachmayer, R., Lippert, R. (Hrsg.) Additive Manufacturing Quantifiziert. Springer Vieweg, Berlin/Heidelberg (2017)
14.
go back to reference Bergmann, A., Grosser, H., Graf, B., Uhlmann, E., Rethmeier, M., Stark, R.: Additive Prozesskette zur Instandsetzung von Bauteilen. Laser Tech. J. 10, 31–35 (2013) CrossRef Bergmann, A., Grosser, H., Graf, B., Uhlmann, E., Rethmeier, M., Stark, R.: Additive Prozesskette zur Instandsetzung von Bauteilen. Laser Tech. J. 10, 31–35 (2013) CrossRef
15.
go back to reference Graf, B., Gumenyuk, A., Rethmeier, M.: Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys. Procedia. 39, 376 (2012) CrossRef Graf, B., Gumenyuk, A., Rethmeier, M.: Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys. Procedia. 39, 376 (2012) CrossRef
16.
go back to reference Birger, E.M., Moskvitin, G.V., Polyakov, A.N., Arkhipov, V.E.: Industrial laser cladding: current state and future. Weld. Int. 25, 234 (2011) CrossRef Birger, E.M., Moskvitin, G.V., Polyakov, A.N., Arkhipov, V.E.: Industrial laser cladding: current state and future. Weld. Int. 25, 234 (2011) CrossRef
17.
go back to reference Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315 (2016) CrossRef Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315 (2016) CrossRef
18.
go back to reference Vollmer, R.: Optimierung mittels Laserauftragschweißen hergestellter Beschichtungen für die Blechumformung. Dissertation, Technischen Universität Graz, Graz. Institut für Werkzeugtechnik und spanlose Produktion (2016) Vollmer, R.: Optimierung mittels Laserauftragschweißen hergestellter Beschichtungen für die Blechumformung. Dissertation, Technischen Universität Graz, Graz. Institut für Werkzeugtechnik und spanlose Produktion (2016)
19.
go back to reference Klocke, F.: Generative Fertigungsverfahren//Fertigungsverfahren 5. Gießen, Pulvermetallurgie, Additive Manufacturing, 4. Aufl. Springer Vieweg, Berlin/Heidelberg (2015) Klocke, F.: Generative Fertigungsverfahren//Fertigungsverfahren 5. Gießen, Pulvermetallurgie, Additive Manufacturing, 4. Aufl. Springer Vieweg, Berlin/Heidelberg (2015)
20.
go back to reference Gebhardt, A.: Generative Fertigungsverfahren: Additive Manufacturing und 3D Drucken für Prototyping, Tooling, Produktion. Carl Hanser, München (2013) CrossRef Gebhardt, A.: Generative Fertigungsverfahren: Additive Manufacturing und 3D Drucken für Prototyping, Tooling, Produktion. Carl Hanser, München (2013) CrossRef
21.
go back to reference Wessarges, Y., Hermsdorf, J., Kaierle, S.: Ermittlung des Potentials der additiven Fertigung für Stentstrukturen aus Nickel-Titan. In: Additive Serienfertigung. Springer Vieweg, Berlin (2018) Wessarges, Y., Hermsdorf, J., Kaierle, S.: Ermittlung des Potentials der additiven Fertigung für Stentstrukturen aus Nickel-Titan. In: Additive Serienfertigung. Springer Vieweg, Berlin (2018)
22.
go back to reference Ott, M.: Multimaterialverarbeitung bei der additiven strahl- und pulverbettbasierten Fertigung. Disseratation. Technische Universität München, München. Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) (2012) Ott, M.: Multimaterialverarbeitung bei der additiven strahl- und pulverbettbasierten Fertigung. Disseratation. Technische Universität München, München. Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) (2012)
23.
go back to reference Zghair, Y.A.: Additive Repair Design Process for Aluminium Components. Dissertation, Gottfried Wilhelm Leibniz Universität Hannover (2019) Zghair, Y.A.: Additive Repair Design Process for Aluminium Components. Dissertation, Gottfried Wilhelm Leibniz Universität Hannover (2019)
24.
go back to reference Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M.: An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit. Manuf. 8, 12 (2015) Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M.: An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit. Manuf. 8, 12 (2015)
25.
go back to reference Acharya, R., Das, S.: Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control. Metal. Mater. Trans. A, 46, 3864–3875 (2015) Acharya, R., Das, S.: Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control. Metal. Mater. Trans. A, 46, 3864–3875 (2015)
26.
go back to reference Lachmayer, R., Lippert, R.B. (Hrsg.): Entwicklungsmethodik für die Additive Fertigung. Springer, Berlin/Heidelberg (2020) Lachmayer, R., Lippert, R.B. (Hrsg.): Entwicklungsmethodik für die Additive Fertigung. Springer, Berlin/Heidelberg (2020)
27.
go back to reference Wegener, M.: Ressourceneffiziente Gestaltung von Prozessketten mit additiven Fertigungsverfahren. RWTH Aachen, Aachen. WZL (2016) Wegener, M.: Ressourceneffiziente Gestaltung von Prozessketten mit additiven Fertigungsverfahren. RWTH Aachen, Aachen. WZL (2016)
28.
go back to reference Widener, C.A., Ozdemir, O.C., Carter, M.: Structural repair using cold spray technology for enhanced sustainability of high value assets. Procedia Manuf. 21, 361 (2018) CrossRef Widener, C.A., Ozdemir, O.C., Carter, M.: Structural repair using cold spray technology for enhanced sustainability of high value assets. Procedia Manuf. 21, 361 (2018) CrossRef
29.
go back to reference Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., Lupoi, R.: Cold spray additive manufacturing and repair: fundamentals and applications. Addit. Manuf. 21, 628 (2018) Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., Lupoi, R.: Cold spray additive manufacturing and repair: fundamentals and applications. Addit. Manuf. 21, 628 (2018)
30.
go back to reference Champagne, V., Helfritch, D.: Critical assessment 11: structural repairs by cold spray. Mater. Sci. Technol. 31(6), 627 (2015) CrossRef Champagne, V., Helfritch, D.: Critical assessment 11: structural repairs by cold spray. Mater. Sci. Technol. 31(6), 627 (2015) CrossRef
31.
go back to reference Lynch, M.E., Gu, W., El-Wardany, T., Hsu, A., Viens, D., Nardi, A., Klecka, M.: Design and topology/shape structural optimisation for additively manufactured cold sprayed components. Virtual Phys. Prototyp. 8, 213 (2013) CrossRef Lynch, M.E., Gu, W., El-Wardany, T., Hsu, A., Viens, D., Nardi, A., Klecka, M.: Design and topology/shape structural optimisation for additively manufactured cold sprayed components. Virtual Phys. Prototyp. 8, 213 (2013) CrossRef
32.
go back to reference Sova, A., Grigoriev, S., Okunkova, A., Smurov, I.: Potential of cold gas dynamic spray as additive manufacturing technology. Int. J. Adv. Manuf. Technol. 69(9–12), 2269 (2013) CrossRef Sova, A., Grigoriev, S., Okunkova, A., Smurov, I.: Potential of cold gas dynamic spray as additive manufacturing technology. Int. J. Adv. Manuf. Technol. 69(9–12), 2269 (2013) CrossRef
33.
go back to reference Wang, J., Prakash, S., Joshi, Y., Liou, F.: Laser aided part repair – a review. In: Proceedings of the Thirteenth Annual Solid Freeform Fabrication Symposium, Austin (2002) Wang, J., Prakash, S., Joshi, Y., Liou, F.: Laser aided part repair – a review. In: Proceedings of the Thirteenth Annual Solid Freeform Fabrication Symposium, Austin (2002)
34.
go back to reference Sexton, L.: Laser cladding: repairing and manufacturing metal parts and tools. In: Proceedings Volume 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications OPTO Ireland, Galway (2002) Sexton, L.: Laser cladding: repairing and manufacturing metal parts and tools. In: Proceedings Volume 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications OPTO Ireland, Galway (2002)
35.
go back to reference Pinkerton, A.J., Wang, W., Li, L.: Component repair using laser direct metal deposition. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222(7), 827 (2008) CrossRef Pinkerton, A.J., Wang, W., Li, L.: Component repair using laser direct metal deposition. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222(7), 827 (2008) CrossRef
36.
go back to reference Optomec (Hrsg.): Optomec LENS Metal Part Repair Examples (2018) Optomec (Hrsg.): Optomec LENS Metal Part Repair Examples (2018)
37.
go back to reference Schmidt, T.: Potentialbewertung generativer Fertigungsverfahren für Leichtbauteile. Springer, Berlin/Heidelberg (2016) CrossRef Schmidt, T.: Potentialbewertung generativer Fertigungsverfahren für Leichtbauteile. Springer, Berlin/Heidelberg (2016) CrossRef
38.
go back to reference Mudge, R.P., Wald, N.R.: Laser engineered net shaping advances additive manufacturing and repair. Weld. J. 86(1), 44 (2007) Mudge, R.P., Wald, N.R.: Laser engineered net shaping advances additive manufacturing and repair. Weld. J. 86(1), 44 (2007)
39.
go back to reference Qi, H., Azer, M., Singh, P.: Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. Int. J. Adv. Manuf. Technol. 48(1–4), 121–131 (2010) CrossRef Qi, H., Azer, M., Singh, P.: Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. Int. J. Adv. Manuf. Technol. 48(1–4), 121–131 (2010) CrossRef
40.
go back to reference Williams, S.: Implementation of laser repair processes of navy components. In: Proceedings of DoD Laser Applications Conference (2003) Williams, S.: Implementation of laser repair processes of navy components. In: Proceedings of DoD Laser Applications Conference (2003)
41.
go back to reference Jhavar, S., Paul, C.P., Jain, N.K.: Causes of failure and repairing options for dies and molds: a review. Eng. Fail. Anal. 34, 519 (2013) CrossRef Jhavar, S., Paul, C.P., Jain, N.K.: Causes of failure and repairing options for dies and molds: a review. Eng. Fail. Anal. 34, 519 (2013) CrossRef
42.
go back to reference Torims, T.: The application of laser cladding to mechanical component repair, renovation and regeneration, the application of laser cladding to mechanical component repair, renovation and regeneration. In: DAAAM International Scientific Book, Bd. 12. DAAAM International Publishing, Vienna (2013) Torims, T.: The application of laser cladding to mechanical component repair, renovation and regeneration, the application of laser cladding to mechanical component repair, renovation and regeneration. In: DAAAM International Scientific Book, Bd. 12. DAAAM International Publishing, Vienna (2013)
43.
go back to reference Clare, A., Oyelola, O., Folkes, J., Farayibi, P.K.: Laser cladding for railway repair and preventative maintenance. J. Laser Appl. 24, 032004 (2012) Clare, A., Oyelola, O., Folkes, J., Farayibi, P.K.: Laser cladding for railway repair and preventative maintenance. J. Laser Appl. 24, 032004 (2012)
45.
go back to reference Díaz, E., Amado, J.M., Montero, J., Tobar, M.J., Yáñez, A.: Comparative study of co-based alloys in repairing low Cr-Mo steel components by laser cladding. Phys. Procedia. 39, 368 (2012) CrossRef Díaz, E., Amado, J.M., Montero, J., Tobar, M.J., Yáñez, A.: Comparative study of co-based alloys in repairing low Cr-Mo steel components by laser cladding. Phys. Procedia. 39, 368 (2012) CrossRef
46.
go back to reference Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133 (2012) CrossRef Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133 (2012) CrossRef
50.
go back to reference Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., et al.: Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. J. Ind. Ecol. 21, S203 (2017) CrossRef Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., et al.: Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. J. Ind. Ecol. 21, S203 (2017) CrossRef
51.
go back to reference DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O.: Additive manufacturing of metallic components – process, structure and properties. Prog. Mater. Sci. 92, 112 (2018) DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O.: Additive manufacturing of metallic components – process, structure and properties. Prog. Mater. Sci. 92, 112 (2018)
52.
go back to reference Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mec. Ind. 13(2), 89–96 (2012) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mec. Ind. 13(2), 89–96 (2012)
53.
go back to reference Zghair, Y.A., Lachmayer, R.: Additive repair design approach: case study to repair aluminium base components. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17). Vancouver (2017) Zghair, Y.A., Lachmayer, R.: Additive repair design approach: case study to repair aluminium base components. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17). Vancouver (2017)
56.
go back to reference Andersson, O., Graichen, A., Brodin, H., Navrotsky, V.: Developing additive manufacturing technology for burner repair. In: Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul Andersson, O., Graichen, A., Brodin, H., Navrotsky, V.: Developing additive manufacturing technology for burner repair. In: Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul
57.
go back to reference Ehlers, T., Lachmayer, R.: Einsatz additiv gefertigter Partikeldämpfer – eine Übersicht. Konstruktion für die Additive Fertigung. 2020, 123–142 (2019) Ehlers, T., Lachmayer, R.: Einsatz additiv gefertigter Partikeldämpfer – eine Übersicht. Konstruktion für die Additive Fertigung. 2020, 123–142 (2019)
58.
go back to reference Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., Lupoi, R.: Solid-state additive manufacturing and repairing by cold spraying: a review. J. Mater. Sci. Technol. 34(3), 440–457 (2017) CrossRef Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., Lupoi, R.: Solid-state additive manufacturing and repairing by cold spraying: a review. J. Mater. Sci. Technol. 34(3), 440–457 (2017) CrossRef
59.
go back to reference Champagne, V.K.: The repair of magnesium rotorcraft components by cold spray. J. Fail. Anal. Prev. 8(2), 164 (2008) CrossRef Champagne, V.K.: The repair of magnesium rotorcraft components by cold spray. J. Fail. Anal. Prev. 8(2), 164 (2008) CrossRef
60.
go back to reference Cavaliere, P., Silvello, A.: Crack repair in aerospace aluminum alloy panels by cold spray. J. Therm. Spray Tech. 26(4), 661 (2017) CrossRef Cavaliere, P., Silvello, A.: Crack repair in aerospace aluminum alloy panels by cold spray. J. Therm. Spray Tech. 26(4), 661 (2017) CrossRef
61.
go back to reference Raoelison, R.N., Verdy, C., Liao, H.: Cold gas dynamic spray additive manufacturing today: deposit possibilities, technological solutions and viable applications. Mater. Des. 133, 266 (2017) CrossRef Raoelison, R.N., Verdy, C., Liao, H.: Cold gas dynamic spray additive manufacturing today: deposit possibilities, technological solutions and viable applications. Mater. Des. 133, 266 (2017) CrossRef
62.
go back to reference Saboori, A., Biamino, S., Valente, A., Gitardi, D., Basile, G., Lombardi, M., Fino, P.: The capacity of cold spray additive manufacturing technology for metallic part repairing. In: Euro PM2018 European powder metallurgy association, Bilbao, Spain (2018) Saboori, A., Biamino, S., Valente, A., Gitardi, D., Basile, G., Lombardi, M., Fino, P.: The capacity of cold spray additive manufacturing technology for metallic part repairing. In: Euro PM2018 European powder metallurgy association, Bilbao, Spain (2018)
63.
go back to reference Lee, J.C., Kang, H.J., Chu, W.S., Ahn, S.H.: Repair of damaged mold surface by cold-spray method. CIRP Ann. Manuf. Technol. 56(1), 577 (2007) CrossRef Lee, J.C., Kang, H.J., Chu, W.S., Ahn, S.H.: Repair of damaged mold surface by cold-spray method. CIRP Ann. Manuf. Technol. 56(1), 577 (2007) CrossRef
64.
go back to reference DIN: DIN 31051 Grundlagen der Instandhaltung. Beuth Verlag GmbH (2019) DIN: DIN 31051 Grundlagen der Instandhaltung. Beuth Verlag GmbH (2019)
65.
go back to reference VDI: VDI 3822 – Schadensanalyse; Grundlagen und Durchführung einer Schadensanalyse. Beuth Verlag GmbH (2011) VDI: VDI 3822 – Schadensanalyse; Grundlagen und Durchführung einer Schadensanalyse. Beuth Verlag GmbH (2011)
66.
go back to reference Fecht, N.: Auftragsarbeit in extremer Hochgeschwindigkeit. In: JOT J. Oberflächentech. 4/17(Sonderheft), S. 20–21. (2017) Fecht, N.: Auftragsarbeit in extremer Hochgeschwindigkeit. In: JOT J. Oberflächentech. 4/17(Sonderheft), S. 20–21. (2017)
68.
go back to reference Optomec: Optomec LENS Metal Part Repair Examples (2020) Optomec: Optomec LENS Metal Part Repair Examples (2020)
69.
go back to reference Ren, L., Padathu, A.P., Ruan, J., Sparks, T., Liou, F.W.: Three dimensional die repair using a hybrid manufacturing system. In: Proceedings of Solid Freeform Fabrication Symposium, Austin (2006) Ren, L., Padathu, A.P., Ruan, J., Sparks, T., Liou, F.W.: Three dimensional die repair using a hybrid manufacturing system. In: Proceedings of Solid Freeform Fabrication Symposium, Austin (2006)
70.
go back to reference Hedges, M., Calder, N.: Near net shape rapid manufacture & repair by LENS. In: Cost Effective Manufacture via Net-Shape Processing, Meeting Proceedings RTO-MP-AVT-139, Paper. Vol. 13. (2006) Hedges, M., Calder, N.: Near net shape rapid manufacture & repair by LENS. In: Cost Effective Manufacture via Net-Shape Processing, Meeting Proceedings RTO-MP-AVT-139, Paper. Vol. 13. (2006)
72.
go back to reference Maev, R. Gr., Strumban, E., Leshchinskiy, V., Dzhurinskiy, D.: Repair Applications of the LPCS Process (2014). Zitiert nach [62] Maev, R. Gr., Strumban, E., Leshchinskiy, V., Dzhurinskiy, D.: Repair Applications of the LPCS Process (2014). Zitiert nach [62]
73.
go back to reference Widener, C., Hrabe, R., James, B., Champagne, V.: B1 Bomber-FEB Panel Repair by CS (2012). Zitiert nach [62]. Widener, C., Hrabe, R., James, B., Champagne, V.: B1 Bomber-FEB Panel Repair by CS (2012). Zitiert nach [62].
74.
go back to reference Matthews, N.: Cold Spray Applications for the Australian Defence Department (2012). Zitiert nach [62] Matthews, N.: Cold Spray Applications for the Australian Defence Department (2012). Zitiert nach [62]
75.
go back to reference Widener, C.A., Carter, M.J., Ozdemir, O.C., Hrabe, R.H., Hoiland, B., Stamey, T.E., et al.: Application of high-pressure cold spray for an internal bore repair of a navy valve actuator. J. Therm. Spray Tech. 25, 193–201 (2016) CrossRef Widener, C.A., Carter, M.J., Ozdemir, O.C., Hrabe, R.H., Hoiland, B., Stamey, T.E., et al.: Application of high-pressure cold spray for an internal bore repair of a navy valve actuator. J. Therm. Spray Tech. 25, 193–201 (2016) CrossRef
76.
go back to reference Astarita, A., Coticelli, F., Prisco, U.: Repairing of an engine block through the cold gas dynamic spray technology. Mat. Res. 19(6), 1226–1231 (2016) CrossRef Astarita, A., Coticelli, F., Prisco, U.: Repairing of an engine block through the cold gas dynamic spray technology. Mat. Res. 19(6), 1226–1231 (2016) CrossRef
77.
go back to reference Lachmayer, R., Gembarski, P.C., Gottwald, P., Lippert, R.B.: The potential of product customization using technologies of additive manufacturing. In: Managing Complexity, S. 71–81. Springer, Cham (2017) CrossRef Lachmayer, R., Gembarski, P.C., Gottwald, P., Lippert, R.B.: The potential of product customization using technologies of additive manufacturing. In: Managing Complexity, S. 71–81. Springer, Cham (2017) CrossRef
Metadata
Title
Einsatz additiver Fertigungsverfahren für die Bauteilreparatur: Ein literaturbasierter Überblick
Authors
Nicola Ganter
Paul Christoph Gembarski
Roland Lachmayer
Copyright Year
2021
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-63030-3_15

Premium Partners