Skip to main content
Top

2024 | OriginalPaper | Chapter

Einstein-Type Metrics and Ricci-Type Solitons on Weak f-K-Contact Manifolds

Author : Vladimir Rovenski

Published in: Differential Geometric Structures and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A weak metric f-structure \((f,Q,\xi _i,\eta ^i,g)\ (i=1,\ldots ,s)\) on a smooth manifold generalizes the metric f-structure, i.e., the linear complex structure on the contact distribution is replaced with a nonsingular skew-symmetric tensor. We study geometry of a weak f-K-contact structure, which is a weak f-contact structure, whose characteristic vector fields are Killing. We show that the distribution \(\ker f\) of a weak f-contact manifold defines a \(\mathfrak {g}\)-foliation with an abelian Lie algebra, characterize weak f-K-contact manifolds among all weak metric f-manifolds by the property known for f-K-contact manifolds, and find when a Riemannian manifold endowed with a set of orthonormal Killing vector fields is a weak f-K-contact manifold. We prove that for \(s>1\), an Einstein weak f-K-contact manifold is Ricci flat and find sufficient conditions for a weak f-K-contact manifold with parallel Ricci tensor or with a generalized gradient Ricci soliton structure to be Ricci flat or a quasi Einstein manifold. We show positive definiteness of the Jacobi operators in the characteristic directions and use this to deform a weak f-K-contact structure to an f-K-contact structure. We define an \(\eta \)-Ricci soliton and \(\eta \)-Einstein structures on a weak metric f-manifold (which for \(s=1\), give the well-known structures on contact metric manifolds) and find sufficient conditions for a compact weak f-K-contact manifold with an \(\eta \)-Ricci soliton structure of constant scalar curvature to be \(\eta \)-Einstein.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alekseevsky, D. and Michor, P.: Differential geometry of \({\mathfrak{g}}\)-manifolds, Differential Geom. Appl. 1995, 5, 371–403 Alekseevsky, D. and Michor, P.: Differential geometry of \({\mathfrak{g}}\)-manifolds, Differential Geom. Appl. 1995, 5, 371–403
2.
go back to reference Berestovskij, V. N. and Nikonorov, Yu. G.: Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 49, No. 3 (2008), 395–407MathSciNetCrossRef Berestovskij, V. N. and Nikonorov, Yu. G.: Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 49, No. 3 (2008), 395–407MathSciNetCrossRef
3.
go back to reference Blair, D. E.: Riemannian geometry of contact and symplectic manifolds, 2nd edition, Springer-Verlag, New York, 2010CrossRef Blair, D. E.: Riemannian geometry of contact and symplectic manifolds, 2nd edition, Springer-Verlag, New York, 2010CrossRef
4.
go back to reference Blair, D. E.: Geometry of manifolds with structural group \(U(n)\times O(s)\), J. Diff. Geom. 4 (1970), 155–167MathSciNet Blair, D. E.: Geometry of manifolds with structural group \(U(n)\times O(s)\), J. Diff. Geom. 4 (1970), 155–167MathSciNet
5.
go back to reference Brunetti, L. and Pastore, A.M.: \(S\)-manifolds versus indefinite \(S\)-manifolds and local decomposition theorems. International Electronic J. of Geometry, 2016, 9:1, 1–8MathSciNetCrossRef Brunetti, L. and Pastore, A.M.: \(S\)-manifolds versus indefinite \(S\)-manifolds and local decomposition theorems. International Electronic J. of Geometry, 2016, 9:1, 1–8MathSciNetCrossRef
6.
go back to reference Cabrerizo, J. L., Fernández, L. M. and Fernández, M.: The curvature tensor fields on \(f\)-manifolds with complemented frames. An. Stiint. Univ. Al. I. Cuza Iasi, 36 (1990), 151–161 Cabrerizo, J. L., Fernández, L. M. and Fernández, M.: The curvature tensor fields on \(f\)-manifolds with complemented frames. An. Stiint. Univ. Al. I. Cuza Iasi, 36 (1990), 151–161
8.
go back to reference Catino, G., Mastrolia, P., Monticelli, D. and Rigoli, M.: On the geometry of gradient Einstein-type manifolds, Pac. J. Math. 286 (1) (2017), 39–67MathSciNetCrossRef Catino, G., Mastrolia, P., Monticelli, D. and Rigoli, M.: On the geometry of gradient Einstein-type manifolds, Pac. J. Math. 286 (1) (2017), 39–67MathSciNetCrossRef
9.
go back to reference Cao, H. D.: Recent progress on Ricci soliton. In: “Recent Advances in Geometric Analysis”, Adv. Lect. Math., 11 (2009), 1–38 Cao, H. D.: Recent progress on Ricci soliton. In: “Recent Advances in Geometric Analysis”, Adv. Lect. Math., 11 (2009), 1–38
10.
11.
go back to reference Cho, J. T. and Kimura, M.: Ricci solitons and real hypersurfaces in complex space form, Tohoku Math. J. 61 (2) (2009), 205–212MathSciNetCrossRef Cho, J. T. and Kimura, M.: Ricci solitons and real hypersurfaces in complex space form, Tohoku Math. J. 61 (2) (2009), 205–212MathSciNetCrossRef
12.
go back to reference Deshmukh, S. and Belova, O.: On Killing vector fields on Riemannian manifolds, Mathematics, 9, 259 (2021), 1–17 Deshmukh, S. and Belova, O.: On Killing vector fields on Riemannian manifolds, Mathematics, 9, 259 (2021), 1–17
13.
go back to reference Duggal, K. L., Ianus, S. and Pastore, A. M.: Maps interchanging \(f\)-structures and their harmonicity. Acta Appl. Math. 67 (2001), 91–115MathSciNetCrossRef Duggal, K. L., Ianus, S. and Pastore, A. M.: Maps interchanging \(f\)-structures and their harmonicity. Acta Appl. Math. 67 (2001), 91–115MathSciNetCrossRef
14.
go back to reference Falcitelli, M., Ianus, S. and Pastore, A.: Riemannian Submersions and Related Topics, World Scientific, 2004 Falcitelli, M., Ianus, S. and Pastore, A.: Riemannian Submersions and Related Topics, World Scientific, 2004
15.
go back to reference Gover, A. R. and Orsted, B.: Universal principles for Kazdan-Warner and Pohozaev-Schoen type identities, Commun. Contemp. Math. 15 (4) (2013), Art. ID 1350002 Gover, A. R. and Orsted, B.: Universal principles for Kazdan-Warner and Pohozaev-Schoen type identities, Commun. Contemp. Math. 15 (4) (2013), Art. ID 1350002
16.
go back to reference Ghosh, G. and De, U. C.: Generalized Ricci soliton on K-contact manifolds, Math. Sci. Appl. E-Notes, 8 (2020), 165–169CrossRef Ghosh, G. and De, U. C.: Generalized Ricci soliton on K-contact manifolds, Math. Sci. Appl. E-Notes, 8 (2020), 165–169CrossRef
17.
go back to reference Ghosh, A.: K-contact and \((k,\mu )\)-contact metric as a generalized \(\eta \)-Ricci soliton. Math. Slovaca 73, No. 1, 185–194 (2023)MathSciNet Ghosh, A.: K-contact and \((k,\mu )\)-contact metric as a generalized \(\eta \)-Ricci soliton. Math. Slovaca 73, No. 1, 185–194 (2023)MathSciNet
18.
go back to reference Goertsches, O. and Loiudice, E.: On the topology of metric \(f\)-K-contact manifolds, Monatshefte für Mathematik, 192 (2020), 355–370MathSciNetCrossRef Goertsches, O. and Loiudice, E.: On the topology of metric \(f\)-K-contact manifolds, Monatshefte für Mathematik, 192 (2020), 355–370MathSciNetCrossRef
19.
go back to reference Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, Vols. I, II, USA, Interscience Publishers, New York–London–Sydney, 1963, 1969 Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, Vols. I, II, USA, Interscience Publishers, New York–London–Sydney, 1963, 1969
20.
go back to reference Mohammed Cherif, A., Zegga, K. and Beldjilali, G.: On the generalised Ricci solitons and Sasakian manifolds. Communications in Mathematics, 30, Issue 1 (2022) 119–123 Mohammed Cherif, A., Zegga, K. and Beldjilali, G.: On the generalised Ricci solitons and Sasakian manifolds. Communications in Mathematics, 30, Issue 1 (2022) 119–123
22.
go back to reference Pigola S., Rigoli M., Rimoldi M. and Setti A. G.: Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4) (2011), 757–799 Pigola S., Rigoli M., Rimoldi M. and Setti A. G.: Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4) (2011), 757–799
23.
go back to reference Rovenski, V.: Generalized Ricci solitons and Einstein metrics on weak K-contact manifolds. Communications in Analysis and Mechanics, 2023, Vol. 15 (2), 177–188MathSciNetCrossRef Rovenski, V.: Generalized Ricci solitons and Einstein metrics on weak K-contact manifolds. Communications in Analysis and Mechanics, 2023, Vol. 15 (2), 177–188MathSciNetCrossRef
24.
go back to reference Rovenski, V.: Metric structures that admit totally geodesic foliations. J. Geom. (2023) 114:32 Rovenski, V.: Metric structures that admit totally geodesic foliations. J. Geom. (2023) 114:32
26.
go back to reference Rovenski, V. and Patra, D. S.: On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds, Differential Geometry and its Applications, 90 (2023) 102043 Rovenski, V. and Patra, D. S.: On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds, Differential Geometry and its Applications, 90 (2023) 102043
27.
go back to reference Rovenski, V. and Walczak, P. G.: Extrinsic geometry of foliations, Progress in Mathematics, vol. 339, Birkhäuser, Cham, 2021CrossRef Rovenski, V. and Walczak, P. G.: Extrinsic geometry of foliations, Progress in Mathematics, vol. 339, Birkhäuser, Cham, 2021CrossRef
28.
go back to reference Rovenski, V. and Wolak, R.: New metric structures on \({\mathfrak{g}}\)-foliations, Indagationes Mathematicae, 33 (2022), 518–532 Rovenski, V. and Wolak, R.: New metric structures on \({\mathfrak{g}}\)-foliations, Indagationes Mathematicae, 33 (2022), 518–532
30.
go back to reference Di Terlizzi, L.: On the curvature of a generalization of contact metric manifolds, Acta Math. Hung. 110, No. 3 (2006), 225–239MathSciNetCrossRef Di Terlizzi, L.: On the curvature of a generalization of contact metric manifolds, Acta Math. Hung. 110, No. 3 (2006), 225–239MathSciNetCrossRef
31.
go back to reference Di Terlizzi, L.: Correction to the paper “On the curvature of a generalization of a contact metric manifolds”, Acta Math. Hung. 124, No. 4 (2009), 399–401 Di Terlizzi, L.: Correction to the paper “On the curvature of a generalization of a contact metric manifolds”, Acta Math. Hung. 124, No. 4 (2009), 399–401
32.
go back to reference Di Terlizzi, L., Pastore, A.M. and Wolak, R.: Harmonic and holomorphic vector fields on an \(f\)-manifold with parallelizable kernel. An. Stiint. Univ. Al. I. Cuza Iausi, Ser. Noua, Mat. 2014, 60, No. 1, 125–144 Di Terlizzi, L., Pastore, A.M. and Wolak, R.: Harmonic and holomorphic vector fields on an \(f\)-manifold with parallelizable kernel. An. Stiint. Univ. Al. I. Cuza Iausi, Ser. Noua, Mat. 2014, 60, No. 1, 125–144
33.
go back to reference Yano, K.: On a structure \(f\) satisfying \(f^3+f=0\), Technical Report No. 12, University of Washington, 1961 Yano, K.: On a structure \(f\) satisfying \(f^3+f=0\), Technical Report No. 12, University of Washington, 1961
34.
go back to reference Yano, K.: and Kon, M. Structures on Manifolds, Vol. 3 of Series in Pure Math. World Scientific Publ. Co., Singapore, 1985 Yano, K.: and Kon, M. Structures on Manifolds, Vol. 3 of Series in Pure Math. World Scientific Publ. Co., Singapore, 1985
Metadata
Title
Einstein-Type Metrics and Ricci-Type Solitons on Weak f-K-Contact Manifolds
Author
Vladimir Rovenski
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_2

Premium Partner