Skip to main content
Top

2013 | OriginalPaper | Chapter

11. Elastic – Plastic Solids

Author : George J. Dvorak

Published in: Micromechanics of Composite Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides a short introduction to constitutive relations for materials that exhibit incremental elastic-plastic deformation in response to an applied loading path which extends beyond their initial yield surface. In a certain sense, it is analogous to Chap.​ 2 on Anisotropic Elastic Solids, with which it shares the results pertaining to isotropic elasticity. Moreover, the instantaneous tangential stiffness or compliance matrices may have as many as 21 nonzero coefficients, as in triclinic elastic materials. In preparation Chap.​ 12, attention is focused on those parts of incremental plasticity theory that are useful in modeling of metal matrix composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Armstrong, P. J., & Frederick, C. O. (1966). A mathematical representation of the multiaxial Bauschinger effect. Report RD/B/N 731, C.E.G.B. Armstrong, P. J., & Frederick, C. O. (1966). A mathematical representation of the multiaxial Bauschinger effect. Report RD/B/N 731, C.E.G.B.
go back to reference Belytschko, T., Liu, W. K., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Chichester: Wiley.MATH Belytschko, T., Liu, W. K., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Chichester: Wiley.MATH
go back to reference Bridgman, P. W. (1952). Studies in large plastic flow and fracture. New York: McGraw-Hill.MATH Bridgman, P. W. (1952). Studies in large plastic flow and fracture. New York: McGraw-Hill.MATH
go back to reference Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and visco-plasticity. International Journal of Plasticity, 5, 274–302.CrossRef Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and visco-plasticity. International Journal of Plasticity, 5, 274–302.CrossRef
go back to reference Chan, K. S., Lindholm, U. S., & Bodner, S. R. (1988). Constitutive modeling for isotropic materials. NASA CR 182132. Chan, K. S., Lindholm, U. S., & Bodner, S. R. (1988). Constitutive modeling for isotropic materials. NASA CR 182132.
go back to reference Dafalias, Y. F., & Popov, E. P. (1976). Plastic internal variables formalism of cyclic plasticity. Journal of Applied Mechanics, 98, 645–651.CrossRef Dafalias, Y. F., & Popov, E. P. (1976). Plastic internal variables formalism of cyclic plasticity. Journal of Applied Mechanics, 98, 645–651.CrossRef
go back to reference Dawson, P. R. (2000). Computational crystal plasticity. International Journal of Solids and Structures, 37, 115–130.CrossRefMATH Dawson, P. R. (2000). Computational crystal plasticity. International Journal of Solids and Structures, 37, 115–130.CrossRefMATH
go back to reference Drucker, D. C. (1967). Introduction to mechanics of deformable solids. New York: McGraw-Hill Book Co. Drucker, D. C. (1967). Introduction to mechanics of deformable solids. New York: McGraw-Hill Book Co.
go back to reference Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., & Liu, C. H. (1988). An experimental study of elastic-plastic behavior of fibrous boron-aluminum composites. Journal of the Mechanics and Physics of Solids, 36, 665–687.CrossRef Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., & Liu, C. H. (1988). An experimental study of elastic-plastic behavior of fibrous boron-aluminum composites. Journal of the Mechanics and Physics of Solids, 36, 665–687.CrossRef
go back to reference Ellyin, F. (1989). An anisotropic hardening rule for elastoplastic solids based on experimental observations. ASME Journal of Applied Mechanics, 56, 489–507.CrossRef Ellyin, F. (1989). An anisotropic hardening rule for elastoplastic solids based on experimental observations. ASME Journal of Applied Mechanics, 56, 489–507.CrossRef
go back to reference Freed, A. D., & Walker, K. P. (1993). Viscoplasticity with creep and plasticity bounds. International Journal of Plasticity, 9, 213–242.CrossRefMATH Freed, A. D., & Walker, K. P. (1993). Viscoplasticity with creep and plasticity bounds. International Journal of Plasticity, 9, 213–242.CrossRefMATH
go back to reference Freed, A. D., Chaboche, J.-L., & Walker, K. P. (1991). A viscoplastic theory with thermodynamic considerations. Acta Mechanica, 90, 155–174.MathSciNetCrossRefMATH Freed, A. D., Chaboche, J.-L., & Walker, K. P. (1991). A viscoplastic theory with thermodynamic considerations. Acta Mechanica, 90, 155–174.MathSciNetCrossRefMATH
go back to reference Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRef Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRef
go back to reference Hill, R. (1950). The mathematical theory of plasticity. New York: Oxford University Press.MATH Hill, R. (1950). The mathematical theory of plasticity. New York: Oxford University Press.MATH
go back to reference Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.CrossRef Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.CrossRef
go back to reference Hughes, T. J. R., & Pister, K. S. (1978). Consistent linearization in mechanics of solids and structures. Computers and Structures, 9, 391–397.MathSciNetCrossRef Hughes, T. J. R., & Pister, K. S. (1978). Consistent linearization in mechanics of solids and structures. Computers and Structures, 9, 391–397.MathSciNetCrossRef
go back to reference Hughes, T. J. R., & Taylor, R. L. (1978). Unconditionally stable algorithms for quasistatic elasto/viscoplastic finite element analysis. Computers and Structures, 8, 169–173.CrossRefMATH Hughes, T. J. R., & Taylor, R. L. (1978). Unconditionally stable algorithms for quasistatic elasto/viscoplastic finite element analysis. Computers and Structures, 8, 169–173.CrossRefMATH
go back to reference Hutchinson, J. W. (2000). Plasticity at the micron scale. International Journal of Solids and Structures, 37, 25–238.MathSciNet Hutchinson, J. W. (2000). Plasticity at the micron scale. International Journal of Solids and Structures, 37, 25–238.MathSciNet
go back to reference Jirasek, M., & Bazant, Z. P. (2002). Inelastic analysis of structures. Chichester: Wiley. Jirasek, M., & Bazant, Z. P. (2002). Inelastic analysis of structures. Chichester: Wiley.
go back to reference Krempl, E. (2000). Visoplastic models for high temperature applications. International Journal of Solids and Structures, 37, 279–291.CrossRefMATH Krempl, E. (2000). Visoplastic models for high temperature applications. International Journal of Solids and Structures, 37, 279–291.CrossRefMATH
go back to reference Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceeidngs of the second Berkeley symposium on mathematical statistics and probability (pp. 481–192). Berkeley: University of California Press. Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceeidngs of the second Berkeley symposium on mathematical statistics and probability (pp. 481–192). Berkeley: University of California Press.
go back to reference Lemaitre, J., & Chaboche, J.-L. (1995). Mechanics of solid materials. Cambridge: Cambridge University Press. Lemaitre, J., & Chaboche, J.-L. (1995). Mechanics of solid materials. Cambridge: Cambridge University Press.
go back to reference Lindholm, U. S., Chan, K. S., Bodner, S. R., Walker, K. P., & Cassenti, B. N. (1984). Constitutive modeling for isotropic materials. NASA Lewis Research Center, NAS3-23925. Lindholm, U. S., Chan, K. S., Bodner, S. R., Walker, K. P., & Cassenti, B. N. (1984). Constitutive modeling for isotropic materials. NASA Lewis Research Center, NAS3-23925.
go back to reference Lubliner, J. (1990). Plasticity theory. New York: Macmillan Publication & Co.MATH Lubliner, J. (1990). Plasticity theory. New York: Macmillan Publication & Co.MATH
go back to reference Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRef Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRef
go back to reference Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATH Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATH
go back to reference Nigam, H., Dvorak, G. J., & Bahei-El-Din, Y. A. (1994). An experimental investigation of elastic-plastic behavior of a fibrous boron-aluminum composite: I. Matrix-dominated mode. II. Fiber dominated mode. International Journal of Plasticity, 10, 23–62.CrossRef Nigam, H., Dvorak, G. J., & Bahei-El-Din, Y. A. (1994). An experimental investigation of elastic-plastic behavior of a fibrous boron-aluminum composite: I. Matrix-dominated mode. II. Fiber dominated mode. International Journal of Plasticity, 10, 23–62.CrossRef
go back to reference Phillips, A. (1986). A review of quasistatic experimental plasticity and viscoplasticity. International Journal of Plasticity, 2, 315–328.CrossRef Phillips, A. (1986). A review of quasistatic experimental plasticity and viscoplasticity. International Journal of Plasticity, 2, 315–328.CrossRef
go back to reference Phillips, A., & Lee, C. W. (1979). Yield surfaces and loading surfaces: Experiments and recommendations. International Journal of Solids and Structures, 15, 715–729.CrossRef Phillips, A., & Lee, C. W. (1979). Yield surfaces and loading surfaces: Experiments and recommendations. International Journal of Solids and Structures, 15, 715–729.CrossRef
go back to reference Phillips, A., Liu, C. S., & Justusson, J. W. (1972). An experimental investigation of yield surfaces at elevated temperatures. Acta Mechanica, 14, 119–146.CrossRef Phillips, A., Liu, C. S., & Justusson, J. W. (1972). An experimental investigation of yield surfaces at elevated temperatures. Acta Mechanica, 14, 119–146.CrossRef
go back to reference Phillips, A., Ricciuti, M., & Tang, J. L. (1974). Some new observations on yield surfaces. Acta Mechanica, 20, 23–39.CrossRef Phillips, A., Ricciuti, M., & Tang, J. L. (1974). Some new observations on yield surfaces. Acta Mechanica, 20, 23–39.CrossRef
go back to reference Ponte Castaneda, P. (1996). A second-order theory for nonlinear composite materials. Computes Rendus de I’Academie des Sciences Paris, 322(Série II b), 3–10.MATH Ponte Castaneda, P. (1996). A second-order theory for nonlinear composite materials. Computes Rendus de I’Academie des Sciences Paris, 322(Série II b), 3–10.MATH
go back to reference Prager, W. (1956). A new method of analyzing stresses and strains in work-hardening plastic solids. ASME Journal of Applied Mechanics, 23, 493–496.MathSciNetMATH Prager, W. (1956). A new method of analyzing stresses and strains in work-hardening plastic solids. ASME Journal of Applied Mechanics, 23, 493–496.MathSciNetMATH
go back to reference Shield, R. T., & Ziegler, H. (1958). On Prager’s hardening rule. Zeitschrift für Angewandte Mathematik und Physik, 9, 260–276.MathSciNetCrossRef Shield, R. T., & Ziegler, H. (1958). On Prager’s hardening rule. Zeitschrift für Angewandte Mathematik und Physik, 9, 260–276.MathSciNetCrossRef
go back to reference Simo, J. C., & Hughes, J. T. R. (1998). Computational inelasticity. New York: Springer.MATH Simo, J. C., & Hughes, J. T. R. (1998). Computational inelasticity. New York: Springer.MATH
go back to reference Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press. Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press.
go back to reference von Mises, R. (1928). Mechanik der plasticschen Formanderung in Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik, 8, 161–185.CrossRefMATH von Mises, R. (1928). Mechanik der plasticschen Formanderung in Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik, 8, 161–185.CrossRefMATH
go back to reference Zaverl, J. R., & Lee, D. (1978). Constitutive relations for nuclear reactor core materials. Journal of Nuclear Materials, 75, 14.CrossRef Zaverl, J. R., & Lee, D. (1978). Constitutive relations for nuclear reactor core materials. Journal of Nuclear Materials, 75, 14.CrossRef
go back to reference Ziegler, H. (1959). A modification of Prager’s hardening rule. Quarterly of Applied Mathematics, 17, 55–65.MathSciNetMATH Ziegler, H. (1959). A modification of Prager’s hardening rule. Quarterly of Applied Mathematics, 17, 55–65.MathSciNetMATH
Metadata
Title
Elastic – Plastic Solids
Author
George J. Dvorak
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_11

Premium Partners