Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2015 | OriginalPaper | Chapter

3. Elasticity of Auxetic Solids

Author : Teik-Cheng Lim

Published in: Auxetic Materials and Structures

Publisher: Springer Singapore

Abstract

Fundamental behavior of auxetic solids is laid down in terms of linear anisotropic constitutive relationship, followed by the derivation of Poisson’s ratio bounds for isotopic solids in 3D and 2D cases. Increasing simplifications are then imposed on the compliance matrices of the complete anisotropic solid until linear isotropic case is obtained, whereby special trends are observed for Poisson’s ratio of −1, −2/3, −1/2 and 0, followed by distinct moduli ratio that separates auxetic solids from conventional ones. Thereafter the chapter explores large elastic deformation, anisotropic crystals, elastoplasticity and viscoelasticity of auxetic media.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Aleshin VI, Raevski IP (2013) Piezoelectric anisotropy of orthorhombic ferroelectric single crystals. J Appl Phys 113(22):224105 CrossRef Aleshin VI, Raevski IP (2013) Piezoelectric anisotropy of orthorhombic ferroelectric single crystals. J Appl Phys 113(22):224105 CrossRef
go back to reference Alvermann S (2008) Effective viscoelastic behaviour of cellular auxetic materials. Monographic series TU Graz: computation in engineering and science, vol 1. Verlag der Technischen Universität Graz, Graz Alvermann S (2008) Effective viscoelastic behaviour of cellular auxetic materials. Monographic series TU Graz: computation in engineering and science, vol 1. Verlag der Technischen Universität Graz, Graz
go back to reference Aouni N, Wheeler L (2010) Decompositions of the compliance operator for analyzing extreme elastic properties. Math Mech Solids 15(1):114–136 CrossRefMATHMathSciNet Aouni N, Wheeler L (2010) Decompositions of the compliance operator for analyzing extreme elastic properties. Math Mech Solids 15(1):114–136 CrossRefMATHMathSciNet
go back to reference Baughman RH, Shacklette JM, Zakhidov AA, Stafström S (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392(6674):362–365 CrossRef Baughman RH, Shacklette JM, Zakhidov AA, Stafström S (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392(6674):362–365 CrossRef
go back to reference Baughman RH, Dantas SO, Stafström S, Zakhidov AA, Mitchell TB, Dubin DHE (2000) Negative Poisson’s ratio for extreme states of matter. Science 288(5473):2018–2022 CrossRef Baughman RH, Dantas SO, Stafström S, Zakhidov AA, Mitchell TB, Dubin DHE (2000) Negative Poisson’s ratio for extreme states of matter. Science 288(5473):2018–2022 CrossRef
go back to reference Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. Trans Soc Rheol 6(1):223–251 CrossRef Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. Trans Soc Rheol 6(1):223–251 CrossRef
go back to reference Choi JB, Lakes RS (1992) Non-linear properties of polymer cellular materials with a negative Poisson's ratio. J Mater Sci 27(19):5375–5381   Choi JB, Lakes RS (1992) Non-linear properties of polymer cellular materials with a negative Poisson's ratio. J Mater Sci 27(19):5375–5381  
go back to reference Ciambella J, Saccomandi G (2014) A continuum hyperelastic model for auxetic materials. Proc Roy Soc A 470(2163):20130691 Ciambella J, Saccomandi G (2014) A continuum hyperelastic model for auxetic materials. Proc Roy Soc A 470(2163):20130691
go back to reference Dementjev AG, Tarakanov OG (1970) Influence of the cellular structure of foams on their mechanical properties. Mech Polym 4:594–602 (in Russian) Dementjev AG, Tarakanov OG (1970) Influence of the cellular structure of foams on their mechanical properties. Mech Polym 4:594–602 (in Russian)
go back to reference Dirrenberger J, Forest S, Jeulin D (2012) Elastoplasticity of auxetic materials. Comput Mater Sci 64:57–61 CrossRef Dirrenberger J, Forest S, Jeulin D (2012) Elastoplasticity of auxetic materials. Comput Mater Sci 64:57–61 CrossRef
go back to reference Every AG, McCurdy AK (1992) Second and higher order elastic constants, vol. III/29A, Landolt–Bornstein, Springer, Berlin Every AG, McCurdy AK (1992) Second and higher order elastic constants, vol. III/29A, Landolt–Bornstein, Springer, Berlin
go back to reference Gaspar N, Smith CW, Evans KE (2009) Auxetic behaviour and anisotropic heterogeneity. Acta Mater 57(3):875–880 CrossRef Gaspar N, Smith CW, Evans KE (2009) Auxetic behaviour and anisotropic heterogeneity. Acta Mater 57(3):875–880 CrossRef
go back to reference Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon Press, Oxford MATH Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon Press, Oxford MATH
go back to reference Goldstein RV, Gorodtsov VA, Lisovenko DS (2009) About negativity of the Poisson’s ratio for anisotropic materials. Dokl Phys 54(12):546–548 CrossRef Goldstein RV, Gorodtsov VA, Lisovenko DS (2009) About negativity of the Poisson’s ratio for anisotropic materials. Dokl Phys 54(12):546–548 CrossRef
go back to reference Goldstein RV, Gorodtsov VA, Lisovenko DS (2011) Variability of elastic properties of hexagonal auxetics. Dokl Phys 56(12):602–605 CrossRef Goldstein RV, Gorodtsov VA, Lisovenko DS (2011) Variability of elastic properties of hexagonal auxetics. Dokl Phys 56(12):602–605 CrossRef
go back to reference Goldstein RV, Gorodtsov VA, Lisovenko DS (2012) Relation of Poisson’s ratio on average with Young’s modulus. Auxetics on average. Dokl Phys 57(4):174–178 CrossRef Goldstein RV, Gorodtsov VA, Lisovenko DS (2012) Relation of Poisson’s ratio on average with Young’s modulus. Auxetics on average. Dokl Phys 57(4):174–178 CrossRef
go back to reference Goldstein RV, Gorodtsov VA, Lisovenko DS (2013a) Young’s moduli and Poisson’s ratios of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Dokl Phys 58(9):400–404 CrossRef Goldstein RV, Gorodtsov VA, Lisovenko DS (2013a) Young’s moduli and Poisson’s ratios of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Dokl Phys 58(9):400–404 CrossRef
go back to reference Goldstein RV, Gorodtsov VA, Lisovenko DS (2013b) Classification of cubic auxetics. Phys Status Solidi B 250(10):2038–2043 Goldstein RV, Gorodtsov VA, Lisovenko DS (2013b) Classification of cubic auxetics. Phys Status Solidi B 250(10):2038–2043
go back to reference Goldstein RV, Gorodtsov VA, Lisovenko DS (2013c) Average Poisson’s ratio for crystals. Hexagonal auxetics. Lett Mater 3(1):7–11 Goldstein RV, Gorodtsov VA, Lisovenko DS (2013c) Average Poisson’s ratio for crystals. Hexagonal auxetics. Lett Mater 3(1):7–11
go back to reference Hilton HH, El Fouly ARA (2007) Designer auxetic viscoelastic sandwich column materials tailored to minimize creep buckling, failure probabilities and prolong survival times. In: Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, 22–26 April 2007 Hilton HH, El Fouly ARA (2007) Designer auxetic viscoelastic sandwich column materials tailored to minimize creep buckling, failure probabilities and prolong survival times. In: Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, 22–26 April 2007
go back to reference Hilton HH, Lee DH, Rahman A, El Fouly ARA (2008) Generalized viscoelastic designer functionally graded auxetic materials engineered/tailored for specific task performances. Mech Time-Depend Mater 12(2):151–178 CrossRef Hilton HH, Lee DH, Rahman A, El Fouly ARA (2008) Generalized viscoelastic designer functionally graded auxetic materials engineered/tailored for specific task performances. Mech Time-Depend Mater 12(2):151–178 CrossRef
go back to reference Milstein F, Huang K (1979) Existence of a negative Poisson ratio in fcc crystals. Phys Rev B 19(4):2030–2033 CrossRef Milstein F, Huang K (1979) Existence of a negative Poisson ratio in fcc crystals. Phys Rev B 19(4):2030–2033 CrossRef
go back to reference Norris AN (2006a) Extreme values of Poisson’s ratio and other engineering moduli in anisotropic manterials. J Mech Mater Struct 1(4):793–812 CrossRef Norris AN (2006a) Extreme values of Poisson’s ratio and other engineering moduli in anisotropic manterials. J Mech Mater Struct 1(4):793–812 CrossRef
go back to reference Nye J (1957) Physical properties of crystals. Oxford University Press, Oxford MATH Nye J (1957) Physical properties of crystals. Oxford University Press, Oxford MATH
go back to reference Rovati M (2004) Directions of auxeticity for monoclinic crystals. Scr Mater 51(11):1087–1091 CrossRef Rovati M (2004) Directions of auxeticity for monoclinic crystals. Scr Mater 51(11):1087–1091 CrossRef
go back to reference Rusch KC (1969) Load-compression behaviour of flexible foams. J Appl Polym Sci 13(11):2297–2311 CrossRef Rusch KC (1969) Load-compression behaviour of flexible foams. J Appl Polym Sci 13(11):2297–2311 CrossRef
go back to reference Scarpa FL, Remillat C, Tomlinson GR (1999) Microstructural modelization of viscoelastic auxetic polymers. Proc SPIE 3672:275–285 CrossRef Scarpa FL, Remillat C, Tomlinson GR (1999) Microstructural modelization of viscoelastic auxetic polymers. Proc SPIE 3672:275–285 CrossRef
go back to reference Scott NH (2007) The incremental bulk modulus, Young’s modulus and Poisson’s ratio in nonlinear isotropic elasticity: physically reasonable response. Math Mech Solids 12(5):526–542 CrossRefMATHMathSciNet Scott NH (2007) The incremental bulk modulus, Young’s modulus and Poisson’s ratio in nonlinear isotropic elasticity: physically reasonable response. Math Mech Solids 12(5):526–542 CrossRefMATHMathSciNet
go back to reference Thomson W (1856) Elements of a mathematical theory of elasticity. Philos Trans R Soc 146:269–275 Thomson W (1856) Elements of a mathematical theory of elasticity. Philos Trans R Soc 146:269–275
go back to reference Tretiakov KV, Wojciechowski KW (2005) Poisson’s ratio of the fcc hard sphere crystal at high densities. J Chem Phys 123(7):074509 CrossRef Tretiakov KV, Wojciechowski KW (2005) Poisson’s ratio of the fcc hard sphere crystal at high densities. J Chem Phys 123(7):074509 CrossRef
go back to reference Warren WE, Kraynik AM (1994) The elastic behavior of low-density cellular plastics. In: Hilyard NC, Cunningham A (eds) Low density cellular plastics, Chapman & Hall, London, pp 187–225 Warren WE, Kraynik AM (1994) The elastic behavior of low-density cellular plastics. In: Hilyard NC, Cunningham A (eds) Low density cellular plastics, Chapman & Hall, London, pp 187–225
go back to reference Wheeler L (2009) Extreme Lamé compliance in crystals of trigonal symmetry: the case of α-quartz. Math Mech Solids 14(1–2):135–147 CrossRefMATHMathSciNet Wheeler L (2009) Extreme Lamé compliance in crystals of trigonal symmetry: the case of α-quartz. Math Mech Solids 14(1–2):135–147 CrossRefMATHMathSciNet
go back to reference Wheeler L, Guo CY (2007) Symmetry analysis of extreme areal Poisson’s ratio in anisotropic crystals. J Mech Mater Struct 2(8):1471–1499 CrossRef Wheeler L, Guo CY (2007) Symmetry analysis of extreme areal Poisson’s ratio in anisotropic crystals. J Mech Mater Struct 2(8):1471–1499 CrossRef
go back to reference Wojciechowski KW (2005) Poisson’s ratio of anisotropic systems. Comput Methods Sci Technol 11(1):73–79 CrossRef Wojciechowski KW (2005) Poisson’s ratio of anisotropic systems. Comput Methods Sci Technol 11(1):73–79 CrossRef
go back to reference Zhu HX, Knott JF, Mills NJ (1997) Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J Mech Phys Solids 45(3):319–343 CrossRef Zhu HX, Knott JF, Mills NJ (1997) Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J Mech Phys Solids 45(3):319–343 CrossRef
Metadata
Title
Elasticity of Auxetic Solids
Author
Teik-Cheng Lim
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-275-3_3

Premium Partners