Skip to main content
Top
Published in: Journal of Electronic Materials 3/2021

11-01-2021 | TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Electrical and Microstructural Reliability of Pressureless Silver-Sintered Joints on Silicon Carbide Power Modules Under Thermal Cycling and High-Temperature Storage

Authors: Won Sik Hong, Mi Song Kim, Kyoung-Kook Hong

Published in: Journal of Electronic Materials | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Low-temperature and pressureless silver (Ag) sintering was applied to a 1200 V/200 A silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) power module with a Ag-finished silicon nitride active metal-brazed substrate, and the results were evaluated for applicability in electric and hybrid electric vehicles. The sintering was performed at 220–240°C, 90 min in vacuum under nitrogen gas conditions; the bonding strength, bonding layer thickness (BLT), void content, and densification of the as-sintered Ag joints were 39 MPa, 71.4 µm, 2%, and 90.5%, respectively. The shear strength, BLT, densification, and microstructure of the Ag-sintered joints were compared before and after the thermal cycling test (− 50–150°C, 1100 cycles, TCT) and high temperature storage test (200°C, 1000 h, HTST). To simultaneously compare the electrical properties of the SiC power module with lead (Pb)-free solder joints, the same SiC MOSFET power module was manufactured using a Sn-3.0Ag-0.5Cu (SAC305) Pb-free solder. The shear strength and densification after TCT and HTST were 35.5 MPa and 39.7 MPa, as well as 92.8% and 94.8%, respectively. The on-resistance and total switching efficiency of the SiC power module with the Ag-sintered joint were also compared to those of the SAC305 solder joint module, which evinced maximum values of 7.3 mΩ and 10.7 mJ that were superior to those of 8.5 mΩ and 11.3 mJ for the SAC305 solder joint, respectively. Under the same measurement conditions, the maximum generated current and voltage values are lower than those of the solder joint module, so it is envisaged that stable power module operation is realizable for long-term use. The Ag-sintered joint surpassed the SAC305 solder interconnects in terms of the electrical and mechanical reliability of the power module. When a SiC wide band gap device was used, it was discovered that Ag sintering was superior to Pb-free solder interconnects to increase the power conversion efficiency of the power module.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Kunimune, M. Kuramoto, S. Ogawa, T. Sugahara, S. Nagao, and K. Suganuma, Acta Mater. 89, 133 (2015).CrossRef T. Kunimune, M. Kuramoto, S. Ogawa, T. Sugahara, S. Nagao, and K. Suganuma, Acta Mater. 89, 133 (2015).CrossRef
2.
3.
go back to reference W.S. Hong, M.S. Kim, D. Kim, and C. Oh, J. Electron. Mater. 48, 122 (2019).CrossRef W.S. Hong, M.S. Kim, D. Kim, and C. Oh, J. Electron. Mater. 48, 122 (2019).CrossRef
4.
go back to reference J. Biela, M. Schweizer, S. Waffler, and J. Kolar, IEEE Trans. Ind. Electron. 58, 2872 (2011).CrossRef J. Biela, M. Schweizer, S. Waffler, and J. Kolar, IEEE Trans. Ind. Electron. 58, 2872 (2011).CrossRef
5.
go back to reference H. Lin, Power SiC 2017: Materials, Devices and Applications (Paris: Yole Development, 2017), pp. 46–108. H. Lin, Power SiC 2017: Materials, Devices and Applications (Paris: Yole Development, 2017), pp. 46–108.
6.
go back to reference Y. Gao, A. Huang, S. Krishnaswami, J. Richmond, and A. Agarwal, IEEE Trans. Ind. Appl. 44, 887 (2008).CrossRef Y. Gao, A. Huang, S. Krishnaswami, J. Richmond, and A. Agarwal, IEEE Trans. Ind. Appl. 44, 887 (2008).CrossRef
8.
go back to reference H. Zhang, C. Chen, S. Nagao, and K. Suganuma, J. Electron. Mater. 46, 1055 (2017).CrossRef H. Zhang, C. Chen, S. Nagao, and K. Suganuma, J. Electron. Mater. 46, 1055 (2017).CrossRef
9.
go back to reference S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013).CrossRef S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013).CrossRef
10.
go back to reference R.K. Williams, R.A. Blanchard, P. Rutter, and Y. Kawaguchi, IEEE Trans. Electron Devices 64, 692 (2017).CrossRef R.K. Williams, R.A. Blanchard, P. Rutter, and Y. Kawaguchi, IEEE Trans. Electron Devices 64, 692 (2017).CrossRef
11.
12.
13.
go back to reference W.S. Hong, M.S. Kim, C. Oh, Y. Joo, Y. Kim, and K.-K. Hong, JOM 72, 889 (2020).CrossRef W.S. Hong, M.S. Kim, C. Oh, Y. Joo, Y. Kim, and K.-K. Hong, JOM 72, 889 (2020).CrossRef
14.
go back to reference C. Chen, D. Kim, Z. Wang, Z. Zhang, Y. Gao, and K. Suganuma, Ceram. Int. 45, 9573 (2019).CrossRef C. Chen, D. Kim, Z. Wang, Z. Zhang, Y. Gao, and K. Suganuma, Ceram. Int. 45, 9573 (2019).CrossRef
15.
go back to reference J.S. Hirschhorn, Introduction to Powder Metallurgy (New York: The Colonial Press Inc., 1969), pp. 155–273. J.S. Hirschhorn, Introduction to Powder Metallurgy (New York: The Colonial Press Inc., 1969), pp. 155–273.
16.
go back to reference C. Chen, Z. Zang, C. Choe, D. Kim, S. Noh, T. Sugahara, and K. Suganuma, J. Electron. Mater. 48, 1106 (2019).CrossRef C. Chen, Z. Zang, C. Choe, D. Kim, S. Noh, T. Sugahara, and K. Suganuma, J. Electron. Mater. 48, 1106 (2019).CrossRef
17.
go back to reference W.S. Hong, C. Oh, M.S. Kim, Y.W. Lee, H.J. Kim, S.J. Hong, and J.T. Moon, J. Electron. Mater. 45, 6150 (2016).CrossRef W.S. Hong, C. Oh, M.S. Kim, Y.W. Lee, H.J. Kim, S.J. Hong, and J.T. Moon, J. Electron. Mater. 45, 6150 (2016).CrossRef
18.
go back to reference W.S. Hong and C.M. Oh, J. KWJS 31, 22 (2013). W.S. Hong and C.M. Oh, J. KWJS 31, 22 (2013).
19.
go back to reference C.M. Oh, N.C. Park, and W.S. Hong, J. Kor. Inst. Met. Mater. 46, 80 (2008). C.M. Oh, N.C. Park, and W.S. Hong, J. Kor. Inst. Met. Mater. 46, 80 (2008).
20.
go back to reference R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004).CrossRef R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004).CrossRef
22.
go back to reference S.D. Mcdonald, K. Nogita, J. Read, T. Ventura, and T. Nishimura, J. Electron. Mater. 42, 256 (2013).CrossRef S.D. Mcdonald, K. Nogita, J. Read, T. Ventura, and T. Nishimura, J. Electron. Mater. 42, 256 (2013).CrossRef
23.
go back to reference K. Sweatman, T. Nishimura, S.D. McDonald, M. Whitewick, and K. Nogita, SMT Mag. 29, 30 (2014). K. Sweatman, T. Nishimura, S.D. McDonald, M. Whitewick, and K. Nogita, SMT Mag. 29, 30 (2014).
Metadata
Title
Electrical and Microstructural Reliability of Pressureless Silver-Sintered Joints on Silicon Carbide Power Modules Under Thermal Cycling and High-Temperature Storage
Authors
Won Sik Hong
Mi Song Kim
Kyoung-Kook Hong
Publication date
11-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 3/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08698-3

Other articles of this Issue 3/2021

Journal of Electronic Materials 3/2021 Go to the issue