Skip to main content
Top

2018 | OriginalPaper | Chapter

Electrical Equivalent Model for Gene Regulatory System

Authors : Monalisa Dutta, Soma Barman

Published in: Proceedings of the International Conference on Microelectronics, Computing & Communication Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An electrical network model is designed to represent the central dogma of molecular biology and simulate the response to study the behaviors of bacteria gene E. coli. The transcription and translation processes of a biological system are represented by differential equations. These equations are mapped into electrical domain, and an equivalent electrical circuit is realized. The electrical response of circuit is simulated in SPICE domain, and result shows the structural and repressor protein behaves like a toggle switch which truly matches with biological system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference F. Jacob, J. Monod, On the regulations of gene activity, in Symposium on Cellular Regulatory Mechanisms (Cold Spring Harbor laboratory, New York, 1961), pp 193–211 F. Jacob, J. Monod, On the regulations of gene activity, in Symposium on Cellular Regulatory Mechanisms (Cold Spring Harbor laboratory, New York, 1961), pp 193–211
4.
go back to reference A. Becskei, Luis Serrano, Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)CrossRef A. Becskei, Luis Serrano, Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)CrossRef
5.
go back to reference M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRef M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRef
6.
go back to reference S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000) S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)
7.
go back to reference N.E. Buchler, U. Gerland, T. Hwa, Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U S A. 102, 9559–9564 (2005) N.E. Buchler, U. Gerland, T. Hwa, Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U S A. 102, 9559–9564 (2005)
8.
go back to reference H. De Jong, Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 67–103 (2002) H. De Jong, Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 67–103 (2002)
9.
go back to reference H. Kim, E. Gelenbe, Stochastic gene expression modeling with hill function for switch-like gene responses. IEEE Transac. Comput. Biol. Bioinform. 9(X), 973–979 (2012) H. Kim, E. Gelenbe, Stochastic gene expression modeling with hill function for switch-like gene responses. IEEE Transac. Comput. Biol. Bioinform. 9(X), 973–979 (2012)
10.
go back to reference H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci., USA 94, 814–819 (1997)CrossRef H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci., USA 94, 814–819 (1997)CrossRef
11.
go back to reference T. Chen, H.L. He, Modeling gene expression with differential equations, in Pacific Symposium of Biocomputing (1999), pp. 17–28 T. Chen, H.L. He, Modeling gene expression with differential equations, in Pacific Symposium of Biocomputing (1999), pp. 17–28
12.
go back to reference H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–819 (1997) H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–819 (1997)
13.
go back to reference I. Shmulevich et al., Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)CrossRef I. Shmulevich et al., Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)CrossRef
14.
go back to reference C. Ferreira, in Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, vol 21, (Springer, 2006) C. Ferreira, in Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, vol 21, (Springer, 2006)
15.
go back to reference G. Bernot, et al., Modeling and analysis of gene regulatory networks, in Modeling in Computational Biology and Biomedicine, (Springer, Berlin, Heidelberg, 2013), pp. 47–80 G. Bernot, et al., Modeling and analysis of gene regulatory networks, in Modeling in Computational Biology and Biomedicine, (Springer, Berlin, Heidelberg, 2013), pp. 47–80
16.
go back to reference S. Paul, D.A. Baxter, J.H. Byrne, Mathematical modeling of gene networks. Neuron 26, 567–580 (2000)CrossRef S. Paul, D.A. Baxter, J.H. Byrne, Mathematical modeling of gene networks. Neuron 26, 567–580 (2000)CrossRef
17.
go back to reference N.R. Zabet, A.N.W. Hone, D.F. Chu, Design principles of transcriptional logic circuits. ALIFE, (2010), pp. 186–194 N.R. Zabet, A.N.W. Hone, D.F. Chu, Design principles of transcriptional logic circuits. ALIFE, (2010), pp. 186–194
18.
go back to reference J.L. Hargrove, F.H. Schmidt, The role of mRNA and protein stability in gene expression. FASEB J. 3, 2360–2370 (1989) J.L. Hargrove, F.H. Schmidt, The role of mRNA and protein stability in gene expression. FASEB J. 3, 2360–2370 (1989)
Metadata
Title
Electrical Equivalent Model for Gene Regulatory System
Authors
Monalisa Dutta
Soma Barman
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5565-2_14