Skip to main content
Top

2006 | OriginalPaper | Chapter

9. Electrical Properties

Authors : Bernd Schumacher, Dr., Heinz-Gunter Bach, Ph.D., Petra Spitzer, Jan Obrzut, Dr.

Published in: Springer Handbook of Materials Measurement Methods

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electronic materials – conductors, insulators, semiconductors – play an important role in today's technology. They constitute “electrical and electronic devices”, such as radio, television, telephone, electric light, electromotors, computers, etc. From a materials science point of view, the electrical properties of materials characterize two basic processes: electrical energy conduction (and dissipation) and electrical energy storage.
  • Electrical conductivity describes the ability of a material to transport charge through the process of conduction, normalized by geometry. Electrical dissipation comes as the result of charge transport or conduction. Dissipation or energy loss results from the conversion of electrical energy to thermal energy (Joule heating) through momentum transfer during collisions as the charges move.
  • Electrical storage is the result of charge storing energy. This process is dielectric polarization, normalized by geometry to be the material property called dielectric permittivity. As polarization occurs and causes charges to move, the charge motion is also dissipative.
In this chapter, the main methods to characterize the electrical properties of materials are compiled. Sections 9.2 to 9.5 describe the measuring methods under the following headings:
  • Electrical conductivity of metallic materials
  • Electrolytical conductivity
  • Semiconductors
  • Dielectrics
As an introductory overview, in Sect. 9.1 the basic categories of electrical materials are outlined in adopting the classification and terminology of chapter the “Electronic Properties of Materials” of “Understanding Materials Science” by Hummel [9.1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
9.1.
go back to reference R. E. Hummel: Understanding Materials Science, Chap. 11, Electrical Properties of Materials (Springer, New York, Berlin 2004) pp. 185–222 R. E. Hummel: Understanding Materials Science, Chap. 11, Electrical Properties of Materials (Springer, New York, Berlin 2004) pp. 185–222
9.2.
go back to reference C. H. He, Z. Lu, S. Liu, R. Liu: Cross-conductivity standard for non-ferrous metals, IEEE Trans. IM 44, 181–183 (1995) C. H. He, Z. Lu, S. Liu, R. Liu: Cross-conductivity standard for non-ferrous metals, IEEE Trans. IM 44, 181–183 (1995)
9.3.
go back to reference G. Rietveld, C. V. Koijmans, L. C. A. Henderson, M. J. Hall, S. Harmon, P. Warnecke, B. Schumacher: DC conductivity measurements in the van der Pauw geometry, IEEE Trans. IM 52, 449–453 (2003) G. Rietveld, C. V. Koijmans, L. C. A. Henderson, M. J. Hall, S. Harmon, P. Warnecke, B. Schumacher: DC conductivity measurements in the van der Pauw geometry, IEEE Trans. IM 52, 449–453 (2003)
9.4.
go back to reference L. J. van der Pauw: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958) L. J. van der Pauw: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958)
9.5.
go back to reference DIN IEC 468: Method of Measurement of Resistivity of Metallic Materials (Beuth, Berlin 1981) DIN IEC 468: Method of Measurement of Resistivity of Metallic Materials (Beuth, Berlin 1981)
9.6.
go back to reference NPL Report DEM-ES 001: Techniques and materials for the measurement of DC and AC conductivity of non-ferrous metals and alloys, Conductivity, May 2004. The Conductivity project is (has been) financially supported by an EU grant (contract no. G6RD-CT-2000-00210) under the EU Growth programme, part of the 5th Framework programme NPL Report DEM-ES 001: Techniques and materials for the measurement of DC and AC conductivity of non-ferrous metals and alloys, Conductivity, May 2004. The Conductivity project is (has been) financially supported by an EU grant (contract no. G6RD-CT-2000-00210) under the EU Growth programme, part of the 5th Framework programme
9.7.
go back to reference M. J. Hall, L. C. A. Henderson, G. Ashcroft, S. Harmon, P. Warnecke, B. Schumacher, G. Rietveld: Discrepancies between the DC and AC measurement of low frequency electrical conductivity, Dig. Conf. Proc. Electrom. Meas. CPEM 2004, London (2004) pp. 34–35 M. J. Hall, L. C. A. Henderson, G. Ashcroft, S. Harmon, P. Warnecke, B. Schumacher, G. Rietveld: Discrepancies between the DC and AC measurement of low frequency electrical conductivity, Dig. Conf. Proc. Electrom. Meas. CPEM 2004, London (2004) pp. 34–35
9.8.
go back to reference A. C. Lynch, A. E. Drake, C. H. Dix: Measurement of eddy-current conductivity, IEE Proc. Sci. Meas. Technol. 130, 254–260 (1983) A. C. Lynch, A. E. Drake, C. H. Dix: Measurement of eddy-current conductivity, IEE Proc. Sci. Meas. Technol. 130, 254–260 (1983)
9.9.
go back to reference H. Kamerlingh Onnes: The superconductivity of mercury, Leiden Commun. 122b, 1240 (1911) H. Kamerlingh Onnes: The superconductivity of mercury, Leiden Commun. 122b, 1240 (1911)
9.10.
go back to reference J. Bardeen, L. N. Cooper, J. R. Schrieffer: Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957)CrossRef J. Bardeen, L. N. Cooper, J. R. Schrieffer: Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957)CrossRef
9.11.
go back to reference J. G. Bednorz, K. A. Müller: Possible high-T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189–193 (1986)CrossRef J. G. Bednorz, K. A. Müller: Possible high-T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189–193 (1986)CrossRef
9.12.
go back to reference M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, L. R. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu: Superconductivity in a new mixed phase Y-Ba-Cu-O system at ambient pressure, Phys. Rev. Lett. 58, 908–910 (1987)CrossRef M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, L. R. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu: Superconductivity in a new mixed phase Y-Ba-Cu-O system at ambient pressure, Phys. Rev. Lett. 58, 908–910 (1987)CrossRef
9.13.
go back to reference C. N. R. Rao, R. Nagarajan, R. Vijayaraghavan: Synthesis of cuprate superconductors, Supercond. Sci. Technol. 6, 1–22 (1993)CrossRef C. N. R. Rao, R. Nagarajan, R. Vijayaraghavan: Synthesis of cuprate superconductors, Supercond. Sci. Technol. 6, 1–22 (1993)CrossRef
9.14.
go back to reference J. Clarke, A. I. Braginski: The SQUID Handbook, Fundamentals and Technology of SQUIDs and SQUID Systems, Vol. 1 (Wiley, New York 2004) J. Clarke, A. I. Braginski: The SQUID Handbook, Fundamentals and Technology of SQUIDs and SQUID Systems, Vol. 1 (Wiley, New York 2004)
9.15.
go back to reference B. D. Josephson: Possible new effects in superconductive tunneling, Phys. Lett. 1, 251–253 (1962)CrossRef B. D. Josephson: Possible new effects in superconductive tunneling, Phys. Lett. 1, 251–253 (1962)CrossRef
9.16.
go back to reference R. Pöpel: The Josephson effect and voltage standards, Metrologia 29, 153–174 (1992)CrossRef R. Pöpel: The Josephson effect and voltage standards, Metrologia 29, 153–174 (1992)CrossRef
9.17.
go back to reference S. A. Keys, D. P. Hampshire: Characterization of the transport critical current density for conductor applications, Handbook of Superconducting Materials II : Characterization, Applications and Cryogenics, ed. by D. A. Cardwell, D. S. Ginley (IOPP, London 2003) p. 1297 S. A. Keys, D. P. Hampshire: Characterization of the transport critical current density for conductor applications, Handbook of Superconducting Materials II : Characterization, Applications and Cryogenics, ed. by D. A. Cardwell, D. S. Ginley (IOPP, London 2003) p. 1297
9.18.
go back to reference W. Meissner, R. Ochsenfeld: Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwiss. 21, 787 (1933) (in German)CrossRef W. Meissner, R. Ochsenfeld: Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwiss. 21, 787 (1933) (in German)CrossRef
9.19.
go back to reference DIN EN IEC 61788-1: Superconductivity – Critical, Current Measurement – DC Critical Current of Cu/Nb-Ti Composite Superconductors (Beuth, Berlin 1999) DIN EN IEC 61788-1: Superconductivity – Critical, Current Measurement – DC Critical Current of Cu/Nb-Ti Composite Superconductors (Beuth, Berlin 1999)
9.20.
go back to reference P. W. Atkins: Physikalische Chemie, 3rd edn. (VCH, Weinheim 1990) pp. 3834–846 German transl. P. W. Atkins: Physikalische Chemie, 3rd edn. (VCH, Weinheim 1990) pp. 3834–846 German transl.
9.21.
go back to reference C. H. Hamann, W. Vielsich: Elektrochemie, 3rd edn. (VCH, Weinheim 1998) C. H. Hamann, W. Vielsich: Elektrochemie, 3rd edn. (VCH, Weinheim 1998)
9.22.
go back to reference J. M. G. Barthel, H. Krienke, W. Kunz: Physical Chemistry of Electrolyte Solutions – Modern Aspects; Top. Phys. Chem., Vol. 5, ed. by J. M. G. Barthel, H. Krienke, W. Kunz (Springer, Berlin, Heidelberg 1998) J. M. G. Barthel, H. Krienke, W. Kunz: Physical Chemistry of Electrolyte Solutions – Modern Aspects; Top. Phys. Chem., Vol. 5, ed. by J. M. G. Barthel, H. Krienke, W. Kunz (Springer, Berlin, Heidelberg 1998)
9.23.
go back to reference J. O. M. Bockris, A. K. N. Reddy, K. N. Amlya: Modern Electrochemistry 1, Ionics, 2nd edn. (Springer, Berlin, Heidelberg 1989) p. 379 J. O. M. Bockris, A. K. N. Reddy, K. N. Amlya: Modern Electrochemistry 1, Ionics, 2nd edn. (Springer, Berlin, Heidelberg 1989) p. 379
9.24.
go back to reference O. F. Mohammed, D. Pines, J. Dreyer, E. Pines, E. T. J. Nibbering: Sequential proton transfer through water bridges in acid-base reactions, Science 310, 83–86 (2005)CrossRef O. F. Mohammed, D. Pines, J. Dreyer, E. Pines, E. T. J. Nibbering: Sequential proton transfer through water bridges in acid-base reactions, Science 310, 83–86 (2005)CrossRef
9.25.
go back to reference F. Brinkmann, N. E. Dam, E. Deák, F. Durbiano, E. Ferrara, J. Fükö, H. D. Jensen, M. Máriássy, R. H. Shreiner, P. Spitzer, U. Sudmeier, M. Surdu: Primary methods for the measurement of electrolytic conductivity, Accred. Qual. Assur. 8, 346–353 (2003)CrossRef F. Brinkmann, N. E. Dam, E. Deák, F. Durbiano, E. Ferrara, J. Fükö, H. D. Jensen, M. Máriássy, R. H. Shreiner, P. Spitzer, U. Sudmeier, M. Surdu: Primary methods for the measurement of electrolytic conductivity, Accred. Qual. Assur. 8, 346–353 (2003)CrossRef
9.26.
go back to reference United States Pharmacopeia: USP 27-NF 22 (U.S. Pharmacopoeia, Rockville 2004) United States Pharmacopeia: USP 27-NF 22 (U.S. Pharmacopoeia, Rockville 2004)
9.27.
go back to reference ISO 7888: 1985 Water Quality: Determination of electrical conductivity (ISO, Geneva 1985) ISO 7888: 1985 Water Quality: Determination of electrical conductivity (ISO, Geneva 1985)
9.28.
go back to reference Y. C. Wu, K. W. Pratt, W. F. Koch: Determination of the absolute specific conductance of primary standard KCl solutions, J. Solution Chem. 18, 515–528 (1989)CrossRef Y. C. Wu, K. W. Pratt, W. F. Koch: Determination of the absolute specific conductance of primary standard KCl solutions, J. Solution Chem. 18, 515–528 (1989)CrossRef
9.29.
go back to reference G. Jones, S. M. Christian: The measurement of the conductance of electrolytes. VI. Galvanic polarization by alternating current, J. Am. Chem. Soc. 57, 272–284 (1935)CrossRef G. Jones, S. M. Christian: The measurement of the conductance of electrolytes. VI. Galvanic polarization by alternating current, J. Am. Chem. Soc. 57, 272–284 (1935)CrossRef
9.30.
go back to reference P. Spitzer, U. Sudmeier: Electrolytic conductivity—A new subject field at PTB, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch-Technische Bundesanstalt, Braunschweig 2000) pp. 39–47 P. Spitzer, U. Sudmeier: Electrolytic conductivity—A new subject field at PTB, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch-Technische Bundesanstalt, Braunschweig 2000) pp. 39–47
9.31.
go back to reference P. Saulnier: Absolute determination of the conductivity of electrolytes. Double differential cell with adjustable constant, J. Solution Chem. 8, 835–845 (1979)CrossRef P. Saulnier: Absolute determination of the conductivity of electrolytes. Double differential cell with adjustable constant, J. Solution Chem. 8, 835–845 (1979)CrossRef
9.32.
go back to reference P. Saulnier, J. Barthel: Determination of electrolytic conductivity of a 0.01 D aqueous potassium chloride solution at various temperatures by an absolute method, J. Solution Chem. 8, 847–851 (1979)CrossRef P. Saulnier, J. Barthel: Determination of electrolytic conductivity of a 0.01 D aqueous potassium chloride solution at various temperatures by an absolute method, J. Solution Chem. 8, 847–851 (1979)CrossRef
9.33.
go back to reference F. Löffler: Design and production of the electric conductivity cell, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch Technische Bundesanstalt, Braunschweig 2000) pp. 49–64 F. Löffler: Design and production of the electric conductivity cell, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch Technische Bundesanstalt, Braunschweig 2000) pp. 49–64
9.34.
go back to reference Y. C. Wu, W. F. Koch, D. Feng, L. A. Holland, A. E. Juhász, A. Tomek: A DC method for the absolute dtermination of conductivities of the primary standard KCl solutions from 0 °C to 50 °C, J. Res. Natl. Inst. Stand. Technol. 99, 241–224 (1994) Y. C. Wu, W. F. Koch, D. Feng, L. A. Holland, A. E. Juhász, A. Tomek: A DC method for the absolute dtermination of conductivities of the primary standard KCl solutions from 0 °C to 50 °C, J. Res. Natl. Inst. Stand. Technol. 99, 241–224 (1994)
9.35.
go back to reference D. F. Evans: The measurement and interpretation of electrolytic conductivity, Techn. Electrochem. 2 (Wiley, New York 1973) D. F. Evans: The measurement and interpretation of electrolytic conductivity, Techn. Electrochem. 2 (Wiley, New York 1973)
9.36.
go back to reference T. S. Light: Temperature dependence and measurement of resistivity of pure water, Anal. Chem. 56, 1138–1142 (1994)CrossRef T. S. Light: Temperature dependence and measurement of resistivity of pure water, Anal. Chem. 56, 1138–1142 (1994)CrossRef
9.37.
go back to reference Radiometer Analytical: Conductivity Theory and Practice, Radiometer Analytical, Villeurbanne, France www.radiometer-analytical.com Radiometer Analytical: Conductivity Theory and Practice, Radiometer Analytical, Villeurbanne, France www.radiometer-analytical.com
9.38.
go back to reference European Pharmacopeia: Conductivity, EP 4, 2.2.38 (European Pharmacopeia, Strasbourg 2004) (http://www.pheur.org/) European Pharmacopeia: Conductivity, EP 4, 2.2.38 (European Pharmacopeia, Strasbourg 2004) (http://​www.​pheur.​org/​)
9.39.
go back to reference W. L. Marshall: Electrical conductance of liquid and supercritical water evaluated from 0 °C and 0.1 MPa to high temperatures and pressures. Reduced-state relationships, J. Chem. Eng. Data 32, 221–226 (1987)CrossRef W. L. Marshall: Electrical conductance of liquid and supercritical water evaluated from 0 °C and 0.1 MPa to high temperatures and pressures. Reduced-state relationships, J. Chem. Eng. Data 32, 221–226 (1987)CrossRef
9.40.
go back to reference R. D. Thornton, T. S. Light: A new approach to accurate resistivity measurement of high purity water, Ultrapure Water 7 (1989) R. D. Thornton, T. S. Light: A new approach to accurate resistivity measurement of high purity water, Ultrapure Water 7 (1989)
9.41.
go back to reference P. Spitzer, B. Rossi, Y. Gignet, S. Mabic, U. Sudmeier: New approach to calibrating conductivity meters in the low conductivity range, Accred. Qual. Assur. 10, 78–81 (2005)CrossRef P. Spitzer, B. Rossi, Y. Gignet, S. Mabic, U. Sudmeier: New approach to calibrating conductivity meters in the low conductivity range, Accred. Qual. Assur. 10, 78–81 (2005)CrossRef
9.42.
go back to reference H. D. Jensen, J. Sørensen: Electrolytic conductivity at DFM—results and experiences, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch-Technische Bundesanstalt, Braunschweig 2000) pp. 153–13 H. D. Jensen, J. Sørensen: Electrolytic conductivity at DFM—results and experiences, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch-Technische Bundesanstalt, Braunschweig 2000) pp. 153–13
9.43.
go back to reference D. C. Look: Electrical Characterization of GaAs Materials and Devices (Wiley, Chichester 1989) D. C. Look: Electrical Characterization of GaAs Materials and Devices (Wiley, Chichester 1989)
9.44.
go back to reference P. Blood, J. W. Orton: The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, New York 1992) P. Blood, J. W. Orton: The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, New York 1992)
9.45.
go back to reference E. B. Hansen: On the influence of shape and variations in conductivity of the sample on four-point measurements, Appl. Sci. Res. B 8, 93–104 (1960)CrossRef E. B. Hansen: On the influence of shape and variations in conductivity of the sample on four-point measurements, Appl. Sci. Res. B 8, 93–104 (1960)CrossRef
9.46.
go back to reference R. L. Petritz: Theory of an experiment for measuring the mobility and density of carriers in the space-charge region of a semiconductor surface, Phys. Rev. 110, 1254–1262 (1958)CrossRef R. L. Petritz: Theory of an experiment for measuring the mobility and density of carriers in the space-charge region of a semiconductor surface, Phys. Rev. 110, 1254–1262 (1958)CrossRef
9.47.
go back to reference L. J. van der Pauw: A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958) L. J. van der Pauw: A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958)
9.48.
go back to reference S. M. Sze: Physics of Semiconductor Devices (Wiley, Chichester 1981) S. M. Sze: Physics of Semiconductor Devices (Wiley, Chichester 1981)
9.49.
go back to reference K. Ziegler, E. Klausmann, S. Kar: Determination of the semiconductor doping profile right up to its surface using the MIS capacitor, Solid-State Electron. 18, 189–198 (1975)CrossRef K. Ziegler, E. Klausmann, S. Kar: Determination of the semiconductor doping profile right up to its surface using the MIS capacitor, Solid-State Electron. 18, 189–198 (1975)CrossRef
9.50.
go back to reference D. P. Kennedy, P. C. Murley, W. Kleinfelder: On the measurement of impurity distributions in silicon by the differential capacitance technique, IBM J. Res. Dev, 399–409 (Sept. 1968) D. P. Kennedy, P. C. Murley, W. Kleinfelder: On the measurement of impurity distributions in silicon by the differential capacitance technique, IBM J. Res. Dev, 399–409 (Sept. 1968)
9.51.
go back to reference D. P. Kennedy, R. P. O'Brian: On the measurement of impurity atom distributions by the differential capacitance technique, IBM J. Res. Dev. 212–214 (March 1969) D. P. Kennedy, R. P. O'Brian: On the measurement of impurity atom distributions by the differential capacitance technique, IBM J. Res. Dev. 212–214 (March 1969)
9.52.
go back to reference W. C. Johnson, P. T. Panousis: The influence of Debye length on the C–V-measurement of doping profiles, IEEE Trans. ED 18, 956–973 (1971) W. C. Johnson, P. T. Panousis: The influence of Debye length on the CV-measurement of doping profiles, IEEE Trans. ED 18, 956–973 (1971)
9.53.
go back to reference W. A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989) W. A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)
9.54.
go back to reference S.R. Forest, R. F. Leheny, R. E. Nahory, M. A. Pollack: In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling, Appl. Phys. Lett. 37(3), 322–325 (1980)CrossRef S.R. Forest, R. F. Leheny, R. E. Nahory, M. A. Pollack: In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling, Appl. Phys. Lett. 37(3), 322–325 (1980)CrossRef
9.55.
go back to reference A. Goetzberger, B. McDonald, R. H. Haitz, R. M. Scarlett: Avalanche effects in silicon p-n junction. II. structurally perfect junctions, J. Appl. Phys. 34, 1591 ff. (1963)CrossRef A. Goetzberger, B. McDonald, R. H. Haitz, R. M. Scarlett: Avalanche effects in silicon p-n junction. II. structurally perfect junctions, J. Appl. Phys. 34, 1591 ff. (1963)CrossRef
9.56.
go back to reference G. L. Miller, D. V. Lang, L. C. Kimerling: Capacitance transient spectroscopy, Ann. Rev. Mater. Sci. 7, 377–448 (1977)CrossRef G. L. Miller, D. V. Lang, L. C. Kimerling: Capacitance transient spectroscopy, Ann. Rev. Mater. Sci. 7, 377–448 (1977)CrossRef
9.57.
go back to reference D. V. Lang: Deep-level transient spectroscopy, J. Appl. Phys. 45(7), 3023–3032 (1974)CrossRef D. V. Lang: Deep-level transient spectroscopy, J. Appl. Phys. 45(7), 3023–3032 (1974)CrossRef
9.58.
go back to reference R. N. Hall: Electron-hole recombination in germanium, Phys. Rev. 87, 387 (1952)CrossRef R. N. Hall: Electron-hole recombination in germanium, Phys. Rev. 87, 387 (1952)CrossRef
9.59.
go back to reference W. Shockley, W. T. Read: Statistics of the recombinations of holes and electrons, Phys. Rev. 87, 835–842 (1952)CrossRef W. Shockley, W. T. Read: Statistics of the recombinations of holes and electrons, Phys. Rev. 87, 835–842 (1952)CrossRef
9.60.
go back to reference D. L. Partin, J. W. Chen, A. G. Milnes, L. F. Vassamillet: J. Appl. Phys. 50(11), 6845 ff (1979)CrossRef D. L. Partin, J. W. Chen, A. G. Milnes, L. F. Vassamillet: J. Appl. Phys. 50(11), 6845 ff (1979)CrossRef
9.61.
go back to reference E. H. Rhoderick: Metal-Semiconductor Contacts (Clarendon, Oxford 1980) E. H. Rhoderick: Metal-Semiconductor Contacts (Clarendon, Oxford 1980)
9.62.
go back to reference A. Piotrowska, A. Guivarc'h, G. Pelous: Ohmic contacts to III-V compound semiconductors: A review of fabrication techniques, Solid-State Electron. 26(3), 179–197 (1983)CrossRef A. Piotrowska, A. Guivarc'h, G. Pelous: Ohmic contacts to III-V compound semiconductors: A review of fabrication techniques, Solid-State Electron. 26(3), 179–197 (1983)CrossRef
9.64.
go back to reference H. H. Berger: Models for contacts to planar devices, Solid-State Electron. 15, 145–158 (1972)CrossRef H. H. Berger: Models for contacts to planar devices, Solid-State Electron. 15, 145–158 (1972)CrossRef
9.63.
go back to reference R. H. Cox, H. Strack: Ohmic contacts for GaAs devices, Solid-State Electron. 10, 1213–1218 (1967)CrossRef R. H. Cox, H. Strack: Ohmic contacts for GaAs devices, Solid-State Electron. 10, 1213–1218 (1967)CrossRef
9.65.
go back to reference P. W. Debye: Polar Molecules (Chemical Catalog, New York 1927) P. W. Debye: Polar Molecules (Chemical Catalog, New York 1927)
9.66.
go back to reference C. P. Smyth: Dielectric Behavior and Structure (McGraw Hill, New York 1955) C. P. Smyth: Dielectric Behavior and Structure (McGraw Hill, New York 1955)
9.67.
go back to reference K. S. Cole, R. H. Cole: Absorption in dielectrics dispersion, J. Chem. Phys. 9, 341 (1941)CrossRef K. S. Cole, R. H. Cole: Absorption in dielectrics dispersion, J. Chem. Phys. 9, 341 (1941)CrossRef
9.68.
go back to reference H. Fröhlich: Theory of Dielectrics (Oxford Univ. Press, Oxford 1949) H. Fröhlich: Theory of Dielectrics (Oxford Univ. Press, Oxford 1949)
9.69.
go back to reference N. Hill, W. E. Vaughman, A. H. Price, M. M. Davies: Dielectric Properties and Molecular Behavior (Van Nostrand Reinhold, New York 1969) N. Hill, W. E. Vaughman, A. H. Price, M. M. Davies: Dielectric Properties and Molecular Behavior (Van Nostrand Reinhold, New York 1969)
9.70.
go back to reference C. J. F. Bottcher, P. Bordewijk: Theory of Electric Polarization (Elsevier, New York 1996) C. J. F. Bottcher, P. Bordewijk: Theory of Electric Polarization (Elsevier, New York 1996)
9.71.
go back to reference N. G. McCrum, B. E. Read, G. Williams: Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York 1967) N. G. McCrum, B. E. Read, G. Williams: Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York 1967)
9.72.
go back to reference J. P. Runt, J. J. Fitzgerald: Dielectric Spectroscopy of Polymeric Materials (Am. Chem. Soc., Washington 1997) J. P. Runt, J. J. Fitzgerald: Dielectric Spectroscopy of Polymeric Materials (Am. Chem. Soc., Washington 1997)
9.73.
go back to reference D. W. Davies: The Theory of the Electric and Magnetic Properties of Molecules (Wiley, New York 1969) D. W. Davies: The Theory of the Electric and Magnetic Properties of Molecules (Wiley, New York 1969)
9.74.
go back to reference A. R. von Hippel (ed.): Dielectric Materials Applications (Wiley, New York 1954) A. R. von Hippel (ed.): Dielectric Materials Applications (Wiley, New York 1954)
9.75.
go back to reference H. E. Bussey: Measurement of RF properties of materials, A survey, Proc. IEEE 55(5), 1046–1053 (1967)CrossRef H. E. Bussey: Measurement of RF properties of materials, A survey, Proc. IEEE 55(5), 1046–1053 (1967)CrossRef
9.76.
go back to reference S. O. Nelson: Dielectric properties of agricultural products, IEEE Trans. El. Insul. 26, 845–869 (1991)CrossRef S. O. Nelson: Dielectric properties of agricultural products, IEEE Trans. El. Insul. 26, 845–869 (1991)CrossRef
9.77.
go back to reference A. W. Kraszewski, S. Trabelsi, S. O. Nelson: Broadband microwave wheat permittivity meaurements in free space, J. Microwave Power Electromag. Energy 37, 41–54 (2002) A. W. Kraszewski, S. Trabelsi, S. O. Nelson: Broadband microwave wheat permittivity meaurements in free space, J. Microwave Power Electromag. Energy 37, 41–54 (2002)
9.78.
go back to reference F. Kremer, A. Schönhals: Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin, Heidelberg 2003) F. Kremer, A. Schönhals: Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin, Heidelberg 2003)
9.79.
go back to reference J. C. Maxwell: An Elementary Treatise on Electricity, 2nd edn. (Clarendon, Oxford 1888) J. C. Maxwell: An Elementary Treatise on Electricity, 2nd edn. (Clarendon, Oxford 1888)
9.80.
go back to reference S. Havriliak, S. J. Negami: A complex plane analysis of α-dispersions in some polymer systems, J. Polym. Sci. C: Polym. Symp. 14, 99 (1966)CrossRef S. Havriliak, S. J. Negami: A complex plane analysis of α-dispersions in some polymer systems, J. Polym. Sci. C: Polym. Symp. 14, 99 (1966)CrossRef
9.81.
go back to reference D. W. Davidson, R. H. Cole: Dielectric relaxation in glicerine, J. Chem. Phys. 18, 1417 (1950)CrossRef D. W. Davidson, R. H. Cole: Dielectric relaxation in glicerine, J. Chem. Phys. 18, 1417 (1950)CrossRef
9.82.
go back to reference V. V. Novikov, V. P. Privalko: Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media with chaotic structure, Phys. Rev. E 64, 031504 (2001)CrossRef V. V. Novikov, V. P. Privalko: Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media with chaotic structure, Phys. Rev. E 64, 031504 (2001)CrossRef
9.83.
go back to reference V. V. Daniel: Dielectric Relaxation (Academic, London 1967) V. V. Daniel: Dielectric Relaxation (Academic, London 1967)
9.84.
go back to reference A. K. Jonsher: Dielectric Relaxation in Solids (Chelsea Dielectrics, London 1983) A. K. Jonsher: Dielectric Relaxation in Solids (Chelsea Dielectrics, London 1983)
9.85.
go back to reference F. Alvarez, A. Alegria, J. Colmenero: A new method for obtaining distribution of relaxation times from frequency relaxation spectra, J. Chem. Phys. 103, 798–806 (1995)CrossRef F. Alvarez, A. Alegria, J. Colmenero: A new method for obtaining distribution of relaxation times from frequency relaxation spectra, J. Chem. Phys. 103, 798–806 (1995)CrossRef
9.86.
go back to reference H. Schäfer, E. Sternin, R. Stannarius, M. Arndt, F. Kremer: Novel approach to the analysis of broadband dielectric spectra, Phys. Rev. Lett. 76, 2177–2180 (1996)CrossRef H. Schäfer, E. Sternin, R. Stannarius, M. Arndt, F. Kremer: Novel approach to the analysis of broadband dielectric spectra, Phys. Rev. Lett. 76, 2177–2180 (1996)CrossRef
9.87.
go back to reference L. Hartshorn, W. H. Ward: The measurement of the permittivity and power factor of dielectrics from 104 to 108 cycles per second, J. Inst. Electr. Eng. 79, 567–609 (1936) L. Hartshorn, W. H. Ward: The measurement of the permittivity and power factor of dielectrics from 104 to 108 cycles per second, J. Inst. Electr. Eng. 79, 567–609 (1936)
9.88.
go back to reference Agilent Technologies: Accessories Selection Guide For Impedance Measurements, Dielectric Test Fixtures (Agilent Technologies, Palo Alto 2001) p. 38 www.agilent.com Agilent Technologies: Accessories Selection Guide For Impedance Measurements, Dielectric Test Fixtures (Agilent Technologies, Palo Alto 2001) p. 38 www.agilent.com
9.89.
go back to reference Application Note 1369-1: Agilent Solutions for Measuring Permittivity and Permeability with LCR Meters and Impedance Analyzers (Agilent Technologies, Palo Alto 2001) www.agilent.com Application Note 1369-1: Agilent Solutions for Measuring Permittivity and Permeability with LCR Meters and Impedance Analyzers (Agilent Technologies, Palo Alto 2001) www.agilent.com
9.90.
go back to reference ASTM D 150-98: Standard Test Method for AC Loss Characteristics and Permittivity of Solid Electrical Insulating Materials (ASTM, West Conshohocken 1998) www.astm.org ASTM D 150-98: Standard Test Method for AC Loss Characteristics and Permittivity of Solid Electrical Insulating Materials (ASTM, West Conshohocken 1998) www.astm.org
9.91.
go back to reference D. A. Gray: Handbook of Coaxial Microwave Measurements (General Radio, West Concord. 1968) D. A. Gray: Handbook of Coaxial Microwave Measurements (General Radio, West Concord. 1968)
9.92.
go back to reference S. Ramo, J. R. Whinnery, T. Van Duzer: Fields and Waves in Communication Electronics (Wiley, New York 1994) S. Ramo, J. R. Whinnery, T. Van Duzer: Fields and Waves in Communication Electronics (Wiley, New York 1994)
9.93.
go back to reference Agilent Technologies: RF and Microwave Test Accessories (Agilent Technologies, Palo Alto 2006) www.agilent.com Agilent Technologies: RF and Microwave Test Accessories (Agilent Technologies, Palo Alto 2006) www.agilent.com
9.94.
go back to reference J. P. Grant, R. N. Clarke, G. T. Symm, N. Spyrou: Acritical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements, J. Phys. E Sci. Instrum. 22, 757–770 (1989)CrossRef J. P. Grant, R. N. Clarke, G. T. Symm, N. Spyrou: Acritical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements, J. Phys. E Sci. Instrum. 22, 757–770 (1989)CrossRef
9.95.
go back to reference Agilent Technologies: 85070C Dielectric Probe Kit (Agilent Technologies, Palo Alto 2005) www.agilent.com Agilent Technologies: 85070C Dielectric Probe Kit (Agilent Technologies, Palo Alto 2005) www.agilent.com
9.96.
go back to reference M. A. Stuchly, S. S. Stuchly: Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies: A review, IEEE Trans. Instrum. Meas 29, 176–183 (1980)CrossRef M. A. Stuchly, S. S. Stuchly: Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies: A review, IEEE Trans. Instrum. Meas 29, 176–183 (1980)CrossRef
9.97.
go back to reference M. F. Iskander, S. S. Stuchly: Fringing field effect in the lumped-capacitance method for permittivity measurements, IEEE Trans. Instrum. Meas 27, 107–109 (1978)CrossRef M. F. Iskander, S. S. Stuchly: Fringing field effect in the lumped-capacitance method for permittivity measurements, IEEE Trans. Instrum. Meas 27, 107–109 (1978)CrossRef
9.98.
go back to reference J. K. Hunton: Analysis of microwave techniques by means of signal flow graphs, IRE Trans. Microwave Theory Tech. 8, 206–212 (1960)CrossRef J. K. Hunton: Analysis of microwave techniques by means of signal flow graphs, IRE Trans. Microwave Theory Tech. 8, 206–212 (1960)CrossRef
9.99.
go back to reference K. Kurokawa: Power waves and the scattering matrix, IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965)CrossRef K. Kurokawa: Power waves and the scattering matrix, IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965)CrossRef
9.100.
go back to reference A. M. Nicolson: Broad-band microwave transmission characteristics from a single measuramant of the transient response, IEEE Trans. Instrum. Meas. 19, 337–382 (1970)CrossRef A. M. Nicolson: Broad-band microwave transmission characteristics from a single measuramant of the transient response, IEEE Trans. Instrum. Meas. 19, 337–382 (1970)CrossRef
9.101.
go back to reference S. S. Stuchly, M. Matuszewski: A combined total reflection-transmission method in application to dielectric spectroscopy, IEEE Trans. Instrum. Meas 27, 285–288 (1978)CrossRef S. S. Stuchly, M. Matuszewski: A combined total reflection-transmission method in application to dielectric spectroscopy, IEEE Trans. Instrum. Meas 27, 285–288 (1978)CrossRef
9.102.
go back to reference Product Note 8510-3: Measuring the dielectric constant of solids with the HP network analyzer (Hewlett Packard, Palo Alto 1985) Product Note 8510-3: Measuring the dielectric constant of solids with the HP network analyzer (Hewlett Packard, Palo Alto 1985)
9.103.
go back to reference J. Baker-Jarvis, R. G. Geyer, P. D. Domich: A nonlinear least-squares with causality constraints applied to transmission line permittivity, IEEE Trans. Intrum. Meas 41, 646–652 (1992)CrossRef J. Baker-Jarvis, R. G. Geyer, P. D. Domich: A nonlinear least-squares with causality constraints applied to transmission line permittivity, IEEE Trans. Intrum. Meas 41, 646–652 (1992)CrossRef
9.104.
go back to reference J. Obrzut, A. Anopchenko: Input impedance of a coaxial line terminated with a complex gap capacitance – numerical experimental analysis, IEEE Trans. Instrum. Meas 53, 1197–1202 (2004)CrossRef J. Obrzut, A. Anopchenko: Input impedance of a coaxial line terminated with a complex gap capacitance – numerical experimental analysis, IEEE Trans. Instrum. Meas 53, 1197–1202 (2004)CrossRef
9.105.
go back to reference Institute for Printed Circuits: Standard Test Method Manual, TM-650, Method 2.5.5.10, High frequency testing to determine permittivity and loss tangent of embedded passive materials (IPC, Bannockburn 2005) www.ipc.org Institute for Printed Circuits: Standard Test Method Manual, TM-650, Method 2.5.5.10, High frequency testing to determine permittivity and loss tangent of embedded passive materials (IPC, Bannockburn 2005) www.ipc.org
9.106.
go back to reference ASTM D2520-01: Standard Test Methods for Complex Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650 °C, Test method B-Resonant Cavity Perturbation Method (ASTM, West Conshohocken 1998) www.astm.org ASTM D2520-01: Standard Test Methods for Complex Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650 °C, Test method B-Resonant Cavity Perturbation Method (ASTM, West Conshohocken 1998) www.astm.org
9.107.
go back to reference G. Kent: Nondestructive permittivity measurements of substrates, IEEE Trans. Instrum. Meas. 45, 102–106 (1996)CrossRef G. Kent: Nondestructive permittivity measurements of substrates, IEEE Trans. Instrum. Meas. 45, 102–106 (1996)CrossRef
9.108.
go back to reference S. Maj, M. Pospieszalski: Acomposite multilayered cylindrical dielectric resonator, IEEE MTT-S Digest, 190–192 (1984) S. Maj, M. Pospieszalski: Acomposite multilayered cylindrical dielectric resonator, IEEE MTT-S Digest, 190–192 (1984)
9.109.
go back to reference J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, R. G. Geyer: Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials, IEEE Trans. Microwave Theory Tech. 47, 752–759 (1999)CrossRef J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, R. G. Geyer: Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials, IEEE Trans. Microwave Theory Tech. 47, 752–759 (1999)CrossRef
9.110.
go back to reference G. I. Woolaver: Accurately measure dielectric constant of soft substrates, Microwave and RF 24, 153–158 (1990) G. I. Woolaver: Accurately measure dielectric constant of soft substrates, Microwave and RF 24, 153–158 (1990)
9.111.
go back to reference S. S. Stuchly, M. A. Rzepecka, M. F. Iskander: Permittivity measurements at microwave frequencies using lumped elements, IEEE Trans Instr. Meas 23, 56–62 (1974)CrossRef S. S. Stuchly, M. A. Rzepecka, M. F. Iskander: Permittivity measurements at microwave frequencies using lumped elements, IEEE Trans Instr. Meas 23, 56–62 (1974)CrossRef
Metadata
Title
Electrical Properties
Authors
Bernd Schumacher, Dr.
Heinz-Gunter Bach, Ph.D.
Petra Spitzer
Jan Obrzut, Dr.
Copyright Year
2006
DOI
https://doi.org/10.1007/978-3-540-30300-8_9

Premium Partners