Skip to main content
Top

2022 | OriginalPaper | Chapter

Electrical Vehicles (EVs)—An Application of Wireless Power Transfer (WPT) System

Authors : Merugu Kavitha, D. Mohan Reddy, N. S. Kalyan Chakravarthy

Published in: AI Enabled IoT for Electrification and Connected Transportation

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent days, electric vehicles (EVs) happen to be adaptable transportation for achieving pollution-free environment. Although the EV usage is often these days, a breakthrough technology is essential to overcome the battery-associated drawbacks. The inherited battery drawbacks include weight, cost, size, low power, and energy densities. For addressing battery connected limitations, a concept of wireless power transfer (WPT) technology is realized. This chapter deliberates the configuration of wireless power transfer (WPT) technology at the system level. Governing international standards of WPT-powered EVs are summarized. The detailed classification of WPT system is investigated and compared. Possible modes of wireless charging for EVs are reviewed and discussed here. The state-of-the-art research development of WPT is presented in detail. Also, several novel coil architectures and circuit configurations utilizing for achieving improved system’s efficiency are discussed in this chapter. Further, a rising potentials and challenges in the application of the WPT system for EVs are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Dai, D.C. Ludois, A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30, 6017–6029 (2015)CrossRef J. Dai, D.C. Ludois, A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30, 6017–6029 (2015)CrossRef
2.
go back to reference C. Qiu, K.T. Chau, C. Liu, C.C. Chan, Overview of wireless power transfer for electric vehicle charging, in World Electric Vehicle Symposium and Exhibition (EVS27), vol. 7 (2013), pp. 1–9 C. Qiu, K.T. Chau, C. Liu, C.C. Chan, Overview of wireless power transfer for electric vehicle charging, in World Electric Vehicle Symposium and Exhibition (EVS27), vol. 7 (2013), pp. 1–9
3.
go back to reference V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)CrossRef V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)CrossRef
4.
go back to reference F. Lu, H. Zhang, H. Hofmann, C.C. Mi, A dynamic charging system with reduced output power pulsation for electric vehicles. IEEE Trans. Ind. Electron. 63, 6580–6590 (2016)CrossRef F. Lu, H. Zhang, H. Hofmann, C.C. Mi, A dynamic charging system with reduced output power pulsation for electric vehicles. IEEE Trans. Ind. Electron. 63, 6580–6590 (2016)CrossRef
5.
go back to reference S. Li, Z. Liu, H. Zhao, L. Zhu, C. Shuai, Z. Chen, Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Trans. Ind. Electron. 63, 6602–6612 (2016) CrossRef S. Li, Z. Liu, H. Zhao, L. Zhu, C. Shuai, Z. Chen, Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Trans. Ind. Electron. 63, 6602–6612 (2016) CrossRef
6.
go back to reference M. Mohammad, S. Choi, Z. Islam, S. Kwak, J. Baek, Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV. IEEE Trans. Transp. Electrif. 3, 445–453 (2017)CrossRef M. Mohammad, S. Choi, Z. Islam, S. Kwak, J. Baek, Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV. IEEE Trans. Transp. Electrif. 3, 445–453 (2017)CrossRef
7.
go back to reference I.A. Shah, H. Yoo, Assessing human exposure with medical implants to electromagnetic fields from a wireless power transmission system in an electric vehicle. IEEE Trans. Electromagn. Compat. 62, 338–345 (2019)CrossRef I.A. Shah, H. Yoo, Assessing human exposure with medical implants to electromagnetic fields from a wireless power transmission system in an electric vehicle. IEEE Trans. Electromagn. Compat. 62, 338–345 (2019)CrossRef
8.
go back to reference S. Li, C.C. Mi, Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 3, 4–17 (2014) S. Li, C.C. Mi, Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 3, 4–17 (2014)
9.
go back to reference J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3, 147–162 (2014)CrossRef J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3, 147–162 (2014)CrossRef
10.
go back to reference H. Feng, T. Cai, S. Duan, J. Zhao, X. Zhang, C. Chen, An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans. Ind. Electron. 63, 6591–6601 (2016)CrossRef H. Feng, T. Cai, S. Duan, J. Zhao, X. Zhang, C. Chen, An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans. Ind. Electron. 63, 6591–6601 (2016)CrossRef
11.
go back to reference A.K. RamRakhyani, S. Mirabbasi, M. Chiao, Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5, 48–63 (2010)CrossRef A.K. RamRakhyani, S. Mirabbasi, M. Chiao, Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5, 48–63 (2010)CrossRef
12.
go back to reference D. Ahn, S. Hong, Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 61, 2225–2235 (2013)CrossRef D. Ahn, S. Hong, Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 61, 2225–2235 (2013)CrossRef
13.
go back to reference T. Campi, S. Cruciani, F. Palandrani, V. De Santis, A. Hirata, M. Feliziani, Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans. Microw. Theory Tech. 64, 633–642 (2016)CrossRef T. Campi, S. Cruciani, F. Palandrani, V. De Santis, A. Hirata, M. Feliziani, Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans. Microw. Theory Tech. 64, 633–642 (2016)CrossRef
14.
go back to reference J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.J. Jeon, D.H. Cho, Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 61, 1179–1192 (2013)CrossRef J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.J. Jeon, D.H. Cho, Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 61, 1179–1192 (2013)CrossRef
15.
go back to reference G.A. Covic, J.T. Boys, M.L. Kissin, H.G. Lu, A three-phase inductive power transfer system for roadway-powered vehicles. IEEE Trans. Ind. Electron. 54, 3370–3378 (2007)CrossRef G.A. Covic, J.T. Boys, M.L. Kissin, H.G. Lu, A three-phase inductive power transfer system for roadway-powered vehicles. IEEE Trans. Ind. Electron. 54, 3370–3378 (2007)CrossRef
16.
go back to reference Y. Jang, M.M. Jovanovic, A contactless electrical energy transmission system for portable-telephone battery chargers. IEEE Trans. Ind. Electron. 50, 520–527 (2003)CrossRef Y. Jang, M.M. Jovanovic, A contactless electrical energy transmission system for portable-telephone battery chargers. IEEE Trans. Ind. Electron. 50, 520–527 (2003)CrossRef
17.
go back to reference J. Kim, H.C. Son, D.H. Kim, Y.J. Park, Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV. IEEE Trans. Consum. Electron. 58, 775–780 (2012)CrossRef J. Kim, H.C. Son, D.H. Kim, Y.J. Park, Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV. IEEE Trans. Consum. Electron. 58, 775–780 (2012)CrossRef
18.
go back to reference A.A. Mohamed, A.A. Marim, O.A. Mohammed, Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications. IEEE Trans. Magn. 53, 1–5 (2017)CrossRef A.A. Mohamed, A.A. Marim, O.A. Mohammed, Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications. IEEE Trans. Magn. 53, 1–5 (2017)CrossRef
19.
go back to reference Y. Tang, Y. Chen, U.K. Madawala, D.J. Thrimawithana, H. Ma, A new controller for bidirectional wireless power transfer systems. IEEE Trans. Power Electron. 33, 9076–9087 (2017)CrossRef Y. Tang, Y. Chen, U.K. Madawala, D.J. Thrimawithana, H. Ma, A new controller for bidirectional wireless power transfer systems. IEEE Trans. Power Electron. 33, 9076–9087 (2017)CrossRef
20.
go back to reference K. Aditya, Design and implementation of an inductive power transfer system for wireless charging of future electric transportation. Doctoral dissertation, University of Ontario Institute of Technology (2016) K. Aditya, Design and implementation of an inductive power transfer system for wireless charging of future electric transportation. Doctoral dissertation, University of Ontario Institute of Technology (2016)
22.
go back to reference A. Ahmad, M.S. Alam, R. Chabaan, A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans. Transp. Electrif. 4, 38–63 (2017)CrossRef A. Ahmad, M.S. Alam, R. Chabaan, A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans. Transp. Electrif. 4, 38–63 (2017)CrossRef
24.
go back to reference T.C. Beh, T. Imura, M. Kato, Y. Hori, Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE International Symposium on Industrial Electronics (2010), pp. 2011–2016 T.C. Beh, T. Imura, M. Kato, Y. Hori, Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE International Symposium on Industrial Electronics (2010), pp. 2011–2016
25.
go back to reference C. Panchal, S. Stegen, J. Lu, Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 21, 922–937 (2018) C. Panchal, S. Stegen, J. Lu, Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 21, 922–937 (2018)
26.
go back to reference S. Moon, G.W. Moon, Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers. IEEE Trans. Power Electron. 31, 6844–6854 (2015) S. Moon, G.W. Moon, Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers. IEEE Trans. Power Electron. 31, 6844–6854 (2015)
27.
go back to reference C. Qiu, K.T. Chau, C. Liu, C.C. Chan, Overview of wireless power transfer for electric vehicle charging, in World Electric Vehicle Symposium and Exhibition (2013), pp. 1–9 C. Qiu, K.T. Chau, C. Liu, C.C. Chan, Overview of wireless power transfer for electric vehicle charging, in World Electric Vehicle Symposium and Exhibition (2013), pp. 1–9
28.
go back to reference Z. Dai, J. Wang, M. Long, H. Huang, A witricity-based high-power device for wireless charging of electric vehicles. Energies 10, 323 (2017)CrossRef Z. Dai, J. Wang, M. Long, H. Huang, A witricity-based high-power device for wireless charging of electric vehicles. Energies 10, 323 (2017)CrossRef
29.
go back to reference G.A. Covic, J.T. Boys, Inductive power transfer. Proc. IEEE 101, 1276–1289 (2013)CrossRef G.A. Covic, J.T. Boys, Inductive power transfer. Proc. IEEE 101, 1276–1289 (2013)CrossRef
30.
go back to reference G.A. Covic, J.T. Boys, Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 1, 28–41 (2013)CrossRef G.A. Covic, J.T. Boys, Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 1, 28–41 (2013)CrossRef
31.
go back to reference C. Rim, Wireless charging research activities around the world. IEEE Power Electron. Mag. 1, 32–37 (2014) C. Rim, Wireless charging research activities around the world. IEEE Power Electron. Mag. 1, 32–37 (2014)
32.
go back to reference V. Cirimele, M. Diana, F. Freschi, M. Mitolo, Inductive power transfer for automotive applications: state-of-the-art and future trends. IEEE Trans. Ind. Appl. 54, 4069–4079 (2018)CrossRef V. Cirimele, M. Diana, F. Freschi, M. Mitolo, Inductive power transfer for automotive applications: state-of-the-art and future trends. IEEE Trans. Ind. Appl. 54, 4069–4079 (2018)CrossRef
33.
go back to reference H. Zeng, S. Yang, F.Z. Peng, Design consideration and comparison of wireless power transfer via harmonic current for PHEV and EV wireless charging. IEEE Trans. Power Electron. 32, 5943–5952 (2016)CrossRef H. Zeng, S. Yang, F.Z. Peng, Design consideration and comparison of wireless power transfer via harmonic current for PHEV and EV wireless charging. IEEE Trans. Power Electron. 32, 5943–5952 (2016)CrossRef
36.
go back to reference H.H. Wu, A. Gilchrist, K. Sealy, D. Bronson, A 90 percent efficient 5 kW inductive charger for EVs, in IEEE Energy Conversion Congress and Exposition (2012), pp. 275–282 H.H. Wu, A. Gilchrist, K. Sealy, D. Bronson, A 90 percent efficient 5 kW inductive charger for EVs, in IEEE Energy Conversion Congress and Exposition (2012), pp. 275–282
37.
go back to reference A.A. Mohamed, C.R. Lashway, O. Mohammed, Modeling and feasibility analysis of quasi-dynamic WPT system for EV applications. IEEE Trans. Transp. Electrif. 3, 343–353 (2017)CrossRef A.A. Mohamed, C.R. Lashway, O. Mohammed, Modeling and feasibility analysis of quasi-dynamic WPT system for EV applications. IEEE Trans. Transp. Electrif. 3, 343–353 (2017)CrossRef
38.
go back to reference Y.J. Jang, Survey of the operation and system study on wireless charging electric vehicle systems. Transp. Res. Part C Emerg. Technol. 95, 844–866 (2018)CrossRef Y.J. Jang, Survey of the operation and system study on wireless charging electric vehicle systems. Transp. Res. Part C Emerg. Technol. 95, 844–866 (2018)CrossRef
39.
go back to reference Z. Wang, S. Cui, S. Han, K. Song, C. Zhu, M.I. Matveevich, O.S. Yurievich, A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles. IEEE Trans. Veh. Technol. 67, 124–133 (2017)CrossRef Z. Wang, S. Cui, S. Han, K. Song, C. Zhu, M.I. Matveevich, O.S. Yurievich, A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles. IEEE Trans. Veh. Technol. 67, 124–133 (2017)CrossRef
40.
go back to reference T. Fujita, T. Yasuda, H. Akagi, A dynamic wireless power transfer system applicable to a stationary system. IEEE Trans. Ind. Appl. 53, 3748–3757 (2017)CrossRef T. Fujita, T. Yasuda, H. Akagi, A dynamic wireless power transfer system applicable to a stationary system. IEEE Trans. Ind. Appl. 53, 3748–3757 (2017)CrossRef
41.
go back to reference Q. Zhu, L. Wang, Y. Guo, C. Liao, F. Li, Applying LCC compensation network to dynamic wireless EV charging system. IEEE Trans. Ind. Electron. 63, 6557–6567 (2016)CrossRef Q. Zhu, L. Wang, Y. Guo, C. Liao, F. Li, Applying LCC compensation network to dynamic wireless EV charging system. IEEE Trans. Ind. Electron. 63, 6557–6567 (2016)CrossRef
42.
go back to reference M. Yilmaz, V.T. Buyukdegirmenci, P.T. Krein, General design requirements and analysis of roadbed inductive power transfer system for dynamic electric vehicle charging, in IEEE Transportation Electrification Conference and Expo (2012), pp. 1–6 M. Yilmaz, V.T. Buyukdegirmenci, P.T. Krein, General design requirements and analysis of roadbed inductive power transfer system for dynamic electric vehicle charging, in IEEE Transportation Electrification Conference and Expo (2012), pp. 1–6
43.
go back to reference S. Choi, J. Huh, W.Y. Lee, S.W. Lee, C.T. Rim, New cross-segmented power supply rails for roadway-powered electric vehicles. IEEE Trans. Power Electron. 28, 5832–5841 (2013)CrossRef S. Choi, J. Huh, W.Y. Lee, S.W. Lee, C.T. Rim, New cross-segmented power supply rails for roadway-powered electric vehicles. IEEE Trans. Power Electron. 28, 5832–5841 (2013)CrossRef
44.
go back to reference Y. Guo, L. Wang, Q. Zhu, C. Liao, F. Li, Switch-on modeling and analysis of dynamic wireless charging system used for electric vehicles. IEEE Trans. Ind. Electron. 63, 6568–6579 (2016)CrossRef Y. Guo, L. Wang, Q. Zhu, C. Liao, F. Li, Switch-on modeling and analysis of dynamic wireless charging system used for electric vehicles. IEEE Trans. Ind. Electron. 63, 6568–6579 (2016)CrossRef
45.
go back to reference D. Naberezhnykh, N. Reed, F. Ognissanto, T. Theodoropoulos, H. Bludszuweit, Operational requirements for dynamic wireless power transfer systems for electric vehicles, in IEEE International Electric Vehicle Conference (2014), pp. 1–8 D. Naberezhnykh, N. Reed, F. Ognissanto, T. Theodoropoulos, H. Bludszuweit, Operational requirements for dynamic wireless power transfer systems for electric vehicles, in IEEE International Electric Vehicle Conference (2014), pp. 1–8
46.
go back to reference G.A. Covic, G. Elliott, O.H. Stielau, R.M. Green, J.T. Boys, The design of a contact-less energy transfer system for a people mover system, in 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409), vol. 1 (2000), pp. 79–84 G.A. Covic, G. Elliott, O.H. Stielau, R.M. Green, J.T. Boys, The design of a contact-less energy transfer system for a people mover system, in 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409), vol. 1 (2000), pp. 79–84
48.
go back to reference K. Throngnumchai, A. Hanamura, Y. Naruse, K. Takeda, Design and evaluation of a wireless power transfer system with road embedded transmitter coils for dynamic charging of electric vehicles. World Electr. Veh. J. 6, 848–857 (2013)CrossRef K. Throngnumchai, A. Hanamura, Y. Naruse, K. Takeda, Design and evaluation of a wireless power transfer system with road embedded transmitter coils for dynamic charging of electric vehicles. World Electr. Veh. J. 6, 848–857 (2013)CrossRef
49.
go back to reference I. Hwang, Y.J. Jang, Y.D. Ko, M.S. Lee, System optimization for dynamic wireless charging electric vehicles operating in a multiple-route environment. IEEE Trans. Intell. Transp. Syst. 19, 1709–1726 (2017)CrossRef I. Hwang, Y.J. Jang, Y.D. Ko, M.S. Lee, System optimization for dynamic wireless charging electric vehicles operating in a multiple-route environment. IEEE Trans. Intell. Transp. Syst. 19, 1709–1726 (2017)CrossRef
50.
go back to reference Y.G. Su, S.Y. Xie, A.P. Hu, C.S. Tang, W. Zhou, L. Huang, Capacitive power transfer system with a mixed-resonant topology for constant-current multiple-pickup applications. IEEE Trans. Power Electron. 32, 8778–8786 (2016)CrossRef Y.G. Su, S.Y. Xie, A.P. Hu, C.S. Tang, W. Zhou, L. Huang, Capacitive power transfer system with a mixed-resonant topology for constant-current multiple-pickup applications. IEEE Trans. Power Electron. 32, 8778–8786 (2016)CrossRef
51.
go back to reference L. Huang, A.P. Hu, A.K. Swain, Y. Su, Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31, 7556–7563 (2016)CrossRef L. Huang, A.P. Hu, A.K. Swain, Y. Su, Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31, 7556–7563 (2016)CrossRef
52.
go back to reference F. Lu, H. Zhang, H. Hofmann, C.C. Mi, A double-sided LC-compensation circuit for loosely coupled capacitive power transfer. IEEE Trans. Power Electron. 33, 1633–1643 (2017)CrossRef F. Lu, H. Zhang, H. Hofmann, C.C. Mi, A double-sided LC-compensation circuit for loosely coupled capacitive power transfer. IEEE Trans. Power Electron. 33, 1633–1643 (2017)CrossRef
53.
go back to reference S.Y.R. Hui, W. Zhong, C.K. Lee, A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500–4511 (2013)CrossRef S.Y.R. Hui, W. Zhong, C.K. Lee, A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500–4511 (2013)CrossRef
54.
go back to reference X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2015)CrossRef X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2015)CrossRef
55.
go back to reference A.A. Mohamed, S. An, O. Mohammed, Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans. Magn. 54, 1–5 (2018)CrossRef A.A. Mohamed, S. An, O. Mohammed, Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans. Magn. 54, 1–5 (2018)CrossRef
56.
go back to reference A. Zaheer, G.A. Covic, D. Kacprzak, A bipolar pad in a 10-kHz 300-W distributed IPT system for AGV applications. IEEE Trans. Ind. Electron. 61, 3288–3301 (2013)CrossRef A. Zaheer, G.A. Covic, D. Kacprzak, A bipolar pad in a 10-kHz 300-W distributed IPT system for AGV applications. IEEE Trans. Ind. Electron. 61, 3288–3301 (2013)CrossRef
57.
go back to reference S. Seo, H. Jo, F. Bien, Free arrangement wireless power transfer system with a ferrite transmission medium and geometry-based performance improvement. IEEE Trans. Power Electron. 35, 4518–4532 (2019)CrossRef S. Seo, H. Jo, F. Bien, Free arrangement wireless power transfer system with a ferrite transmission medium and geometry-based performance improvement. IEEE Trans. Power Electron. 35, 4518–4532 (2019)CrossRef
58.
go back to reference T.H. Kim, G.H. Yun, W.Y. Lee, J.G. Yook, Asymmetric coil structures for highly efficient wireless power transfer systems. IEEE Trans. Microw. Theory Tech. 66, 3443–3451 (2018)CrossRef T.H. Kim, G.H. Yun, W.Y. Lee, J.G. Yook, Asymmetric coil structures for highly efficient wireless power transfer systems. IEEE Trans. Microw. Theory Tech. 66, 3443–3451 (2018)CrossRef
59.
go back to reference M. Budhia, G.A. Covic, J.T. Boys, Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26, 3096–3108 (2011)CrossRef M. Budhia, G.A. Covic, J.T. Boys, Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26, 3096–3108 (2011)CrossRef
60.
go back to reference G. Buja, M. Bertoluzzo, K.N. Mude, Design and experimentation of WPT charger for electric city car. IEEE Trans. Ind. Electron. 62, 7436–7447 (2015)CrossRef G. Buja, M. Bertoluzzo, K.N. Mude, Design and experimentation of WPT charger for electric city car. IEEE Trans. Ind. Electron. 62, 7436–7447 (2015)CrossRef
61.
go back to reference Z. Luo, X. Wei, Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Trans. Ind. Electron. 65, 331–341 (2017)CrossRef Z. Luo, X. Wei, Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Trans. Ind. Electron. 65, 331–341 (2017)CrossRef
62.
go back to reference L. Xiang, Y. Sun, C. Tang, X. Dai, C. Jiang, Design of crossed DD coil for dynamic wireless charging of electric vehicles, in IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (2017), pp. 1–5 L. Xiang, Y. Sun, C. Tang, X. Dai, C. Jiang, Design of crossed DD coil for dynamic wireless charging of electric vehicles, in IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (2017), pp. 1–5
63.
go back to reference L. Zhao, S. Ruddell, D.J. Thrimawithana, U.K. Madawala, P.A. Hu, A hybrid wireless charging system with DDQ pads for dynamic charging of EVs, in IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (2017), pp. 1–6 L. Zhao, S. Ruddell, D.J. Thrimawithana, U.K. Madawala, P.A. Hu, A hybrid wireless charging system with DDQ pads for dynamic charging of EVs, in IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (2017), pp. 1–6
64.
go back to reference G. Ke, Q. Chen, W. Gao, S.C. Wong, K.T. Chi, Power converter with novel transformer structure for wireless power transfer using a DD2Q power receiver coil set, in IEEE Energy Conversion Congress and Exposition (2016), pp. 1–6 G. Ke, Q. Chen, W. Gao, S.C. Wong, K.T. Chi, Power converter with novel transformer structure for wireless power transfer using a DD2Q power receiver coil set, in IEEE Energy Conversion Congress and Exposition (2016), pp. 1–6
65.
go back to reference W. Zhang, C.C. Mi, Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 65, 4768–4778 (2015)CrossRef W. Zhang, C.C. Mi, Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 65, 4768–4778 (2015)CrossRef
66.
go back to reference A. Ramezani, S. Farhangi, H. Iman-Eini, B. Farhangi, R. Rahimi, G.R. Moradi, Optimized LCC-series compensated resonant network for stationary wireless EV chargers. IEEE Trans. Ind. Electron. 66, 2756–2765 (2018)CrossRef A. Ramezani, S. Farhangi, H. Iman-Eini, B. Farhangi, R. Rahimi, G.R. Moradi, Optimized LCC-series compensated resonant network for stationary wireless EV chargers. IEEE Trans. Ind. Electron. 66, 2756–2765 (2018)CrossRef
67.
go back to reference Y. Wang, Y. Yao, X. Liu, D. Xu, L. Cai, An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33, 2007–2025 (2017)CrossRef Y. Wang, Y. Yao, X. Liu, D. Xu, L. Cai, An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33, 2007–2025 (2017)CrossRef
68.
go back to reference W. Li, H. Zhao, S. Li, J. Deng, T. Kan, C.C. Mi, Integrated LCC compensation topology for wireless charger in electric and plug-in electric vehicles. IEEE Trans. Ind. Electron. 62, 4215–4225 (2014)CrossRef W. Li, H. Zhao, S. Li, J. Deng, T. Kan, C.C. Mi, Integrated LCC compensation topology for wireless charger in electric and plug-in electric vehicles. IEEE Trans. Ind. Electron. 62, 4215–4225 (2014)CrossRef
69.
go back to reference C. Liu, S. Ge, Y. Guo, H. Li, G. Cai, Double-LCL resonant compensation network for electric vehicles wireless power transfer: experimental study and analysis. IET Power Electron. 9, 2262–2270 (2016)CrossRef C. Liu, S. Ge, Y. Guo, H. Li, G. Cai, Double-LCL resonant compensation network for electric vehicles wireless power transfer: experimental study and analysis. IET Power Electron. 9, 2262–2270 (2016)CrossRef
70.
go back to reference J. Liu, K.W. Chan, C.Y. Chung, N.H.L. Chan, M. Liu, W. Xu, Single-stage wireless-power-transfer resonant converter with boost bridgeless power-factor-correction rectifier. IEEE Trans. Ind. Electron. 65, 2145–2155 (2017)CrossRef J. Liu, K.W. Chan, C.Y. Chung, N.H.L. Chan, M. Liu, W. Xu, Single-stage wireless-power-transfer resonant converter with boost bridgeless power-factor-correction rectifier. IEEE Trans. Ind. Electron. 65, 2145–2155 (2017)CrossRef
71.
go back to reference M. Hayati, S. Roshani, S. Roshani, M.K. Kazimierczuk, H. Sekiya, Design of class E power amplifier with new structure and flat top switch voltage waveform. IEEE Trans. Power Electron. 33, 2571–2579 (2017)CrossRef M. Hayati, S. Roshani, S. Roshani, M.K. Kazimierczuk, H. Sekiya, Design of class E power amplifier with new structure and flat top switch voltage waveform. IEEE Trans. Power Electron. 33, 2571–2579 (2017)CrossRef
72.
go back to reference J. Choi, W. Liang, L. Raymond, J. Rivas, A high-frequency resonant converter based on the class phi2 inverter for wireless power transfer, in IEEE 79th Vehicular Technology Conference (2014), pp. 1–5 J. Choi, W. Liang, L. Raymond, J. Rivas, A high-frequency resonant converter based on the class phi2 inverter for wireless power transfer, in IEEE 79th Vehicular Technology Conference (2014), pp. 1–5
73.
go back to reference S. Aldhaher, D.C. Yates, P.D. Mitcheson, Load-independent class E/EF inverters and rectifiers for MHz-switching applications. IEEE Trans. Power Electron. 33, 8270–8287 (2018)CrossRef S. Aldhaher, D.C. Yates, P.D. Mitcheson, Load-independent class E/EF inverters and rectifiers for MHz-switching applications. IEEE Trans. Power Electron. 33, 8270–8287 (2018)CrossRef
74.
go back to reference X. Huang, Y. Kong, Z. Ouyang, W. Chen, S. Lin, Analysis and comparison of push–pull class-E inverters with magnetic integration for megahertz wireless power transfer. IEEE Trans. Power Electron. 35, 565–577 (2019)CrossRef X. Huang, Y. Kong, Z. Ouyang, W. Chen, S. Lin, Analysis and comparison of push–pull class-E inverters with magnetic integration for megahertz wireless power transfer. IEEE Trans. Power Electron. 35, 565–577 (2019)CrossRef
75.
go back to reference J. Zhang, X. Yuan, C. Wang, Y. He, Comparative analysis of two-coil and three-coil structures for wireless power transfer. IEEE Trans. Power Electron. 32, 341–352 (2016)CrossRef J. Zhang, X. Yuan, C. Wang, Y. He, Comparative analysis of two-coil and three-coil structures for wireless power transfer. IEEE Trans. Power Electron. 32, 341–352 (2016)CrossRef
76.
go back to reference Q. Zhu, Y. Guo, L. Wang, C. Liao, F. Li, Improving the misalignment tolerance of wireless charging system by optimizing the compensate capacitor. IEEE Trans. Ind. Electron. 62, 4832–4836 (2015)CrossRef Q. Zhu, Y. Guo, L. Wang, C. Liao, F. Li, Improving the misalignment tolerance of wireless charging system by optimizing the compensate capacitor. IEEE Trans. Ind. Electron. 62, 4832–4836 (2015)CrossRef
Metadata
Title
Electrical Vehicles (EVs)—An Application of Wireless Power Transfer (WPT) System
Authors
Merugu Kavitha
D. Mohan Reddy
N. S. Kalyan Chakravarthy
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2184-1_8