Skip to main content
Top
Published in: Metallurgist 3-4/2022

10-08-2022

Electro-Spark Treatment with Low-Melting Al–Si and Al–Ca Electrodes in Order to Improve Wear and Oxidation Resistance of EP741NP Alloy Prepared by Selective Laser Melting

Authors: S. K. Mukanov, F. A. Baskov, M. I. Petrzhik, E. A. Levashov

Published in: Metallurgist | Issue 3-4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to improve the oxidation resistance at 870°C of workpieces made of ÉP741NP alloy grown using selective laser melting (SLM) technology, electric spark treatment by near-eutectic Al–12%Si, Al–7%Ca–1%Mn and Al–6%Ca–0.6% Si electrodes is conducted. The effect of electrode composition on the microstructure, phase composition, mechanical and tribological properties of the modified layers before and after oxidation annealing is studied. It is shown that electro-spark treatment of EP741NP alloy with near-eutectic Al–Si and Al–Ca electrodes as a result of reaction phase formation leads to formation of intermetallic phases β-NiAl and γ′-Ni3Al. The modified layer formed by an Al–7%Ca–1%Mn electrode demonstrates the slowest wear rate (8.29 ⋅ 10–5 mm3/N/m), which is 4.4 times slower compared with ÉP741NP (36.50 ⋅ 10–5 mm3/N/m). Annealing treated samples at 870°C for 10 hours in air leads to formation of a dense and homogeneous barrier layer of Al2O3 or CaAl2O4 and an increase in the proportion of the β-NiAl phase that prevents oxidation of an SLM nickel sample, increases its hardness to 8.9 GPa, and wear resistance by a factor of 1.8.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. N. Kablov, Cast Heat-Resistant Alloys. S. T. Kishkin Effect [in Russian] Nauka, Moscow (2006) E. N. Kablov, Cast Heat-Resistant Alloys. S. T. Kishkin Effect [in Russian] Nauka, Moscow (2006)
2.
go back to reference O. A. Bazyleva, M. M. Karashaev, A. V. Shestakov, and É. G. Arginbaeva, “Effect of annealing temperature on intermetallic alloy homogeneity based on Ni3Al compound,” Trudy VIAM, No. 8, 3–10 (2020). O. A. Bazyleva, M. M. Karashaev, A. V. Shestakov, and É. G. Arginbaeva, “Effect of annealing temperature on intermetallic alloy homogeneity based on Ni3Al compound,” Trudy VIAM, No. 8, 3–10 (2020).
3.
go back to reference Zh. A., Sentyurina, F. A. Baskov, P. A. Loginov, Yu.Yu. Kaplanskii, A. V. Mishukov, I. A. Logachev, M. Ya. Bychkova, E. A. Levashov, and A. I. Logacheva, “The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion,” Additive Manufacturing, 37, 101629–101631 (2021). Zh. A., Sentyurina, F. A. Baskov, P. A. Loginov, Yu.Yu. Kaplanskii, A. V. Mishukov, I. A. Logachev, M. Ya. Bychkova, E. A. Levashov, and A. I. Logacheva, “The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion,” Additive Manufacturing, 37, 101629–101631 (2021).
4.
go back to reference O. A. Bazyleva, É. G. Arginbaeva, M. V. Unchikova, and Yu. V. Kostenko, “Effect of high-temperature annealing on structure and properties of alloys of alloys based on Ni3Al,” Vestn. MGTU im N. É. Bauman. Ser Mashinostroenie, No. 1, 112–122 (2016). O. A. Bazyleva, É. G. Arginbaeva, M. V. Unchikova, and Yu. V. Kostenko, “Effect of high-temperature annealing on structure and properties of alloys of alloys based on Ni3Al,” Vestn. MGTU im N. É. Bauman. Ser Mashinostroenie, No. 1, 112–122 (2016).
5.
go back to reference G. Jangali Satish, V. N. Gaitonde, and Vinayak N. Kulkarn, “Traditional and non-traditional machining of nickel-based superalloys: A brief rev,” Materials Today: Proc., 44, No. 1, 1448–1454 (2021). G. Jangali Satish, V. N. Gaitonde, and Vinayak N. Kulkarn, “Traditional and non-traditional machining of nickel-based superalloys: A brief rev,” Materials Today: Proc., 44, No. 1, 1448–1454 (2021).
6.
go back to reference E. Hosseini and V. A. Popovich, “A review of mechanical properties of additively manufactured Inconel 718,” Additive Manufacturing, 30, 100877–100872 (2019).CrossRef E. Hosseini and V. A. Popovich, “A review of mechanical properties of additively manufactured Inconel 718,” Additive Manufacturing, 30, 100877–100872 (2019).CrossRef
7.
go back to reference F. A. Baskov, Zh. A. Sentyurina, Yu. Yu. Kaplanskii, I. A. Logachev, A. S. Semerich, and E. A. Levashov, “The influence of post heat treatments on the evolution of microstructure and mechanical properties of EP741NP nickel alloy produced by laser powder bed fusion,” Materials Sci. and Eng. A, 817, 141340–141342 (2021).CrossRef F. A. Baskov, Zh. A. Sentyurina, Yu. Yu. Kaplanskii, I. A. Logachev, A. S. Semerich, and E. A. Levashov, “The influence of post heat treatments on the evolution of microstructure and mechanical properties of EP741NP nickel alloy produced by laser powder bed fusion,” Materials Sci. and Eng. A, 817, 141340–141342 (2021).CrossRef
8.
go back to reference G. S. Garibov, “Crystallization theory and heat-resistant nickel alloy granulation technology,” Tekhnol. Legkykh Splavov, No. 1, 107–118 (2016). G. S. Garibov, “Crystallization theory and heat-resistant nickel alloy granulation technology,” Tekhnol. Legkykh Splavov, No. 1, 107–118 (2016).
9.
go back to reference G. S. Garibov, “Scientific and technical reserve in the field of granular metallurgy for creating prospective aviation engines,” Tekhnol. Legkykh Splavov, No. 2, 63–71 (2018). G. S. Garibov, “Scientific and technical reserve in the field of granular metallurgy for creating prospective aviation engines,” Tekhnol. Legkykh Splavov, No. 2, 63–71 (2018).
10.
go back to reference A. D. Verkhoturov, V. M.Makienko, L. A. Konevtsov, and Ya. A. Vostrikov, “Increase in hard alloy heat resistance with electrospark alloying with aluminum and titanium,” Metallurgiya Materialoved., No. 4 (24), 69–73 (2015). A. D. Verkhoturov, V. M.Makienko, L. A. Konevtsov, and Ya. A. Vostrikov, “Increase in hard alloy heat resistance with electrospark alloying with aluminum and titanium,” Metallurgiya Materialoved., No. 4 (24), 69–73 (2015).
11.
go back to reference A. E., Kudryashov, A. Yu. Potanin, D. N. Lebedev, I. V. Sukhorukova, D. V. Shtansky, and A. E. Levashov, “Structure and properties of Cr–Al–Si–B coatings produced by pulsed electrospark deposition on a nickel alloy,” Surf. Coat. Technol., 285, 278–288 (2016). A. E., Kudryashov, A. Yu. Potanin, D. N. Lebedev, I. V. Sukhorukova, D. V. Shtansky, and A. E. Levashov, “Structure and properties of Cr–Al–Si–B coatings produced by pulsed electrospark deposition on a nickel alloy,” Surf. Coat. Technol., 285, 278–288 (2016).
12.
go back to reference Ph. V. Kiryukhantsev-Korneev, A. E. Kudryashov, A. N. Sheveyko, A. S. Orekhov, and E. A. Levashov, “Improving the oxidation resistance of Inconel 718 high-temperature nickel alloy using combined surface engineering technology,” Letters on Materials, 10, 371–376 (2020).CrossRef Ph. V. Kiryukhantsev-Korneev, A. E. Kudryashov, A. N. Sheveyko, A. S. Orekhov, and E. A. Levashov, “Improving the oxidation resistance of Inconel 718 high-temperature nickel alloy using combined surface engineering technology,” Letters on Materials, 10, 371–376 (2020).CrossRef
13.
go back to reference V. A. Poklad, Yu. P. Shkretov, and N. V. Abraimov, “Coating for protection from high-temperature GTE rotor blade gas corrosion,” Dvigatel’, No. 4-, 202 (2010). V. A. Poklad, Yu. P. Shkretov, and N. V. Abraimov, “Coating for protection from high-temperature GTE rotor blade gas corrosion,” Dvigatel’, No. 4-, 202 (2010).
15.
go back to reference K. A. Kuptsov, A. N. Sheveyko, E. I. Zamulaeva, and D. V. Shtansky, “Two-layer nanocomposite WC/a-C coatings produced by a combination of pulsed arc evaporation and electro-spark deposition in vacuum,” Materials & Design, 167, 107645 (2019). K. A. Kuptsov, A. N. Sheveyko, E. I. Zamulaeva, and D. V. Shtansky, “Two-layer nanocomposite WC/a-C coatings produced by a combination of pulsed arc evaporation and electro-spark deposition in vacuum,” Materials & Design, 167, 107645 (2019).
16.
go back to reference S. N. Khimukhin, I. A. Astapov, M. A. Teslina, and K. P. Bezmaternykh, “Formation of heat-resistant coating by electro-spark alloying using NiAl intermetallic alloys,” Tekhnicheskie Nauki ot Teorii k Praktike, No. 15, 91–98 (2012). S. N. Khimukhin, I. A. Astapov, M. A. Teslina, and K. P. Bezmaternykh, “Formation of heat-resistant coating by electro-spark alloying using NiAl intermetallic alloys,” Tekhnicheskie Nauki ot Teorii k Praktike, No. 15, 91–98 (2012).
17.
go back to reference A. E. Kudryashov, E. I. Zamulaeva, P. V. Vakaev, E. A. Levashov, T. A. Sviridova, and J. J. Mur, “Features of coating formation based on TiC, NiAl, TiAl during double reaction electro-spark strengthening,” Tsvetnye Metally, No. 9, 73–79 (2002). A. E. Kudryashov, E. I. Zamulaeva, P. V. Vakaev, E. A. Levashov, T. A. Sviridova, and J. J. Mur, “Features of coating formation based on TiC, NiAl, TiAl during double reaction electro-spark strengthening,” Tsvetnye Metally, No. 9, 73–79 (2002).
18.
go back to reference E. A. Levashov, E. I. Kharlamov, A. E. Kudryashov, M. Okhinagi, M. Koizumi, and S. Khosomi, “Thermal reaction electro-spark surface strengthening using charge electrodes,” Izv. Vuzov. Tsvet. Met., No. 2, 39–47 (1998). E. A. Levashov, E. I. Kharlamov, A. E. Kudryashov, M. Okhinagi, M. Koizumi, and S. Khosomi, “Thermal reaction electro-spark surface strengthening using charge electrodes,” Izv. Vuzov. Tsvet. Met., No. 2, 39–47 (1998).
19.
go back to reference E. A. Levashov, E. I. Kharlamov, and A. A. Korostelin, “Preparation and use of charge electrodes for thermal reaction electro-spark strengthening,” Izv. Vuzov. Tsvet. Met., No. 5, 64–68 (1999). E. A. Levashov, E. I. Kharlamov, and A. A. Korostelin, “Preparation and use of charge electrodes for thermal reaction electro-spark strengthening,” Izv. Vuzov. Tsvet. Met., No. 5, 64–68 (1999).
20.
go back to reference S. K. Mukanov, A. E. Kudryashov, E. A. Naumova, and M. I. Petrzhik, “Reaction phase formation during electro-spark treatment of ÉP741NP alloy with Al–Si alloy readily melting electrode,” Tsvet. Met., No. 8, 82–90 (2020). S. K. Mukanov, A. E. Kudryashov, E. A. Naumova, and M. I. Petrzhik, “Reaction phase formation during electro-spark treatment of ÉP741NP alloy with Al–Si alloy readily melting electrode,” Tsvet. Met., No. 8, 82–90 (2020).
21.
go back to reference ТI 51-11301236–2021 on the Process of Local Electro-Spark Treatment of Objects by Readily Melting Electrodes Prepared by Additive Technology, NPO Metall, Moscow (2021). ТI 51-11301236–2021 on the Process of Local Electro-Spark Treatment of Objects by Readily Melting Electrodes Prepared by Additive Technology, NPO Metall, Moscow (2021).
22.
go back to reference Masoud Mohammadtaheri, Yuanshi Li, and Qiaoqin Yang, “Hard Cr2O3 coatings on SS316L substrates prepared by reactive magnetron sputtering technique: a potential candidate for orthopedic implants,” Environ. Sci. Pollut. Res. Int., 21, 25146–25154 (2021).CrossRef Masoud Mohammadtaheri, Yuanshi Li, and Qiaoqin Yang, “Hard Cr2O3 coatings on SS316L substrates prepared by reactive magnetron sputtering technique: a potential candidate for orthopedic implants,” Environ. Sci. Pollut. Res. Int., 21, 25146–25154 (2021).CrossRef
23.
go back to reference I. Fasaki, A. Koutoulaki, M. Kompitsas, and C. Charitidis, “Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition,” Applied Surface Science, 257, 429–433 (2010).CrossRef I. Fasaki, A. Koutoulaki, M. Kompitsas, and C. Charitidis, “Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition,” Applied Surface Science, 257, 429–433 (2010).CrossRef
24.
go back to reference F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu, “Osman mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. of the Mechanical Behavior of Biomedical Materials, 30, 168–175 (2014). F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu, “Osman mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. of the Mechanical Behavior of Biomedical Materials, 30, 168–175 (2014).
Metadata
Title
Electro-Spark Treatment with Low-Melting Al–Si and Al–Ca Electrodes in Order to Improve Wear and Oxidation Resistance of EP741NP Alloy Prepared by Selective Laser Melting
Authors
S. K. Mukanov
F. A. Baskov
M. I. Petrzhik
E. A. Levashov
Publication date
10-08-2022
Publisher
Springer US
Published in
Metallurgist / Issue 3-4/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01331-0

Other articles of this Issue 3-4/2022

Metallurgist 3-4/2022 Go to the issue

Premium Partners