Skip to main content
Top
Published in:

08-02-2024

Electrocardiogram Denoising Based on SWT and WATV Using ANNs

Authors: Abdallah Rezgui, Brahim Nasraoui, Mourad Talbi

Published in: Circuits, Systems, and Signal Processing | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper introduces an innovative electrocardiogram (\({\text{ECG}}\)) denoising technique based on stationary wavelet transform (\(SWT)\) and wavelet/total variation (WATV). In this technique, we also use two different artificial neural networks (\(ANNs\)) to determine two ideal thresholds, \(thr_{1}\) and \(thr_{2}\). The latter is used for the soft thresholding of a noisy details coefficient, \(cdb_{2}\), to obtain a denoised coefficient, \(cdd_{2}\). The threshold \(thr_{1}\) is used for the soft thresholding of a noisy details coefficient, \(cdb_{1}\), yielding a denoised coefficient, \(cdd_{1} .{ }\) The coefficient \(cdb_{1}\) and a noisy approximation coefficient, \(cab_{1}\), are obtained by applying \(SWT\) to the noisy ECG signal. The coefficient \(cdb_{2}\) and another noisy approximation coefficient, \(cab_{2}\), are obtained by applying \(SWT\) to \(cab_{1}\). In this proposed ECG denoising system, we also apply a WATV-based denoising technique to \(cab_{2}\) to obtain a denoised approximation coefficient, \(cad_{2}\). This WATV-based denoising technique requires the estimation of the level of the noise corrupting the clean ECG signal. This noise is additive Gaussian white noise (AGWN) and its level is denoted as \(\sigma\), which is estimated from \(cdb_{1}\). After that, the inverse of \(SWT\) (\(SWT^{ - 1}\)) is applied to \(cdd_{2}\) and \(cad_{2}\) to obtain a denoised approximation coefficient, \(cad_{1}\). Subsequently, we apply \(SWT^{ - 1}\) to \(cdd_{1}\) and \(cad_{1}\) to finally obtain the denoised ECG signal. The performance of this proposed ECG denoising technique is proven by the results obtained after computing the signal-to-noise ratio (\(SNR\)), the peak SNR (\(PSNR\)), the mean square error (\(MSE\)), the mean absolute error (\(MAE\)) and the cross-correlation (\(CC\)).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference V. Afonso, W. Tompkins, T. Nguyen, S. Trautmann, S. Luo, Filter bank-based processing of the stress ECG, in Proceedings of the IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, vol. 2, pp. 887–888, Montreal, QC, Canada, 1995. V. Afonso, W. Tompkins, T. Nguyen, S. Trautmann, S. Luo, Filter bank-based processing of the stress ECG, in Proceedings of the IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, vol. 2, pp. 887–888, Montreal, QC, Canada, 1995.
2.
go back to reference M.A. Awal, S.S. Mostafa, M. Ahmad, M.A. Rashid, An adaptive level dependent wavelet thresholding for ECG denoising. Biocybernet. Biomed. Eng. 34(4), 238–249 (2014)CrossRef M.A. Awal, S.S. Mostafa, M. Ahmad, M.A. Rashid, An adaptive level dependent wavelet thresholding for ECG denoising. Biocybernet. Biomed. Eng. 34(4), 238–249 (2014)CrossRef
3.
go back to reference M. Bandarabadi, M. Karami-Mollaei, A. Afzalian, J. Ghasemi, ECG denoising using singular value decomposition. Aust. J. Basic Appl. Sci. 4(7), 2109–2113 (2010) M. Bandarabadi, M. Karami-Mollaei, A. Afzalian, J. Ghasemi, ECG denoising using singular value decomposition. Aust. J. Basic Appl. Sci. 4(7), 2109–2113 (2010)
4.
go back to reference P.R.B. Barbosa, J. Barbosa-Filho, C.A.M. de Sa, E.C. Barbosa, J. Nadal, Reduction of electromyographic noise in the signal-averaged electrocardiogram by spectral decomposition. IEEE Trans. Biomed. Eng. 50(1), 114–117 (2003)CrossRef P.R.B. Barbosa, J. Barbosa-Filho, C.A.M. de Sa, E.C. Barbosa, J. Nadal, Reduction of electromyographic noise in the signal-averaged electrocardiogram by spectral decomposition. IEEE Trans. Biomed. Eng. 50(1), 114–117 (2003)CrossRef
5.
go back to reference P. Bonizzi, J. Karel, S. Zeemering, R. Peeters, Sleep apnea detection directly from unprocessed ECG through singular spectrum decomposition, in 2015 Computing in Cardiology Conference (CinC), pp. 309–312, Nice, France, 2015. P. Bonizzi, J. Karel, S. Zeemering, R. Peeters, Sleep apnea detection directly from unprocessed ECG through singular spectrum decomposition, in 2015 Computing in Cardiology Conference (CinC), pp. 309–312, Nice, France, 2015.
6.
go back to reference K. Chang, Ensemble empirical mode decomposition based ECG noise filtering method, in 2010 International Conference on Machine Learning and Cybernetics, pp. 210–213, Qingdao, China, 2010 K. Chang, Ensemble empirical mode decomposition based ECG noise filtering method, in 2010 International Conference on Machine Learning and Cybernetics, pp. 210–213, Qingdao, China, 2010
7.
go back to reference G.H. Choi, J.H. Jung, H.M. Moon, Y.T. Kim, S.B. Pan, User authentication system based on baseline-corrected ECG for biometrics. Intell. Autom. Soft Comput. 25(1), 193–204 (2019) G.H. Choi, J.H. Jung, H.M. Moon, Y.T. Kim, S.B. Pan, User authentication system based on baseline-corrected ECG for biometrics. Intell. Autom. Soft Comput. 25(1), 193–204 (2019)
8.
go back to reference N. Dey, T.P. Dash, S. Dash, ECG signal denoising by functional link artificial neural network (FLANN). Int. J. Biomed. Eng. Technol. 7(4), 377–389 (2011)CrossRef N. Dey, T.P. Dash, S. Dash, ECG signal denoising by functional link artificial neural network (FLANN). Int. J. Biomed. Eng. Technol. 7(4), 377–389 (2011)CrossRef
9.
go back to reference Y. Ding, I. Selesnick, Artifact-free wavelet denoising: non-convex sparse regularization, in convex optimization. IEEE Signal Process. Lett. 22(9), 1364–1368 (2015)CrossRef Y. Ding, I. Selesnick, Artifact-free wavelet denoising: non-convex sparse regularization, in convex optimization. IEEE Signal Process. Lett. 22(9), 1364–1368 (2015)CrossRef
10.
go back to reference D.L. Donoho, I.M. Johnstone, Threshold selection for wavelet shrinkage of noisy data, in Proceedings of the 16th Annual Conference of the IEEE Engineering in Medicine and biology society, Maryland, USA, 1994, pp. 24a–25a D.L. Donoho, I.M. Johnstone, Threshold selection for wavelet shrinkage of noisy data, in Proceedings of the 16th Annual Conference of the IEEE Engineering in Medicine and biology society, Maryland, USA, 1994, pp. 24a–25a
12.
go back to reference D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)MathSciNetCrossRef D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)MathSciNetCrossRef
13.
go back to reference I. Hermawan, A. Y. Husodo, W. Jatmiko, B. Wiweko, A. Boediman, B. K. Pradekso, Denoising noisy ECG signal based on adaptive Fourier decomposition, in 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), pp. 11–14, Depok, Indonesia, 2018. I. Hermawan, A. Y. Husodo, W. Jatmiko, B. Wiweko, A. Boediman, B. K. Pradekso, Denoising noisy ECG signal based on adaptive Fourier decomposition, in 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), pp. 11–14, Depok, Indonesia, 2018.
14.
go back to reference M. Kang, B. Vidakovic. WavmatND: A MATLAB Package for Non-Decimated Wavelet Transform and its Applications. arXiv:1604.07098v1 [stat.AP] 24 Apr 2016. M. Kang, B. Vidakovic. WavmatND: A MATLAB Package for Non-Decimated Wavelet Transform and its Applications. arXiv:​1604.​07098v1 [stat.AP] 24 Apr 2016.
15.
go back to reference K. Li, W. Pan, Y. Li, Q. Jiang, G. Liu, A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing 294, 94–101 (2018)CrossRef K. Li, W. Pan, Y. Li, Q. Jiang, G. Liu, A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing 294, 94–101 (2018)CrossRef
16.
go back to reference Y. Li, Y. Pang, J. Wang, X. Li, Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 314, 336–346 (2018)CrossRef Y. Li, Y. Pang, J. Wang, X. Li, Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 314, 336–346 (2018)CrossRef
17.
go back to reference X. Liu, Y. Si, D. Wang, LSTM neural network for beat classification in ECG identity recognition. Intell. Autom. Soft Comput. 26(2), 341–351 (2020) X. Liu, Y. Si, D. Wang, LSTM neural network for beat classification in ECG identity recognition. Intell. Autom. Soft Comput. 26(2), 341–351 (2020)
18.
go back to reference Y. Liu, Y. Li, H. Lin, H. Ma, An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geosci. Remote Sens. Lett. 11(5), 896–900 (2014)CrossRef Y. Liu, Y. Li, H. Lin, H. Ma, An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geosci. Remote Sens. Lett. 11(5), 896–900 (2014)CrossRef
19.
go back to reference C.A. Medina, A. Alcaim, J.A. Apolinario, wavelet denoising of speech using neural networks for threshold selection. Electron. Lett. 39(25), 1869–1871 (2003)CrossRef C.A. Medina, A. Alcaim, J.A. Apolinario, wavelet denoising of speech using neural networks for threshold selection. Electron. Lett. 39(25), 1869–1871 (2003)CrossRef
20.
go back to reference K. Naveed, M. Tahir Akhtar, M. Faisal Siddiqui, N. Rehman, A statistical approach to signal denoising based on data-driven multiscale representation. Digital Signal Process. 108, 102896 (2021)CrossRef K. Naveed, M. Tahir Akhtar, M. Faisal Siddiqui, N. Rehman, A statistical approach to signal denoising based on data-driven multiscale representation. Digital Signal Process. 108, 102896 (2021)CrossRef
21.
go back to reference P. Nguyen, J.M. Kim, Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition (Elsevier Science Inc., Amsterdam, 2016)CrossRef P. Nguyen, J.M. Kim, Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition (Elsevier Science Inc., Amsterdam, 2016)CrossRef
22.
go back to reference N. Nikolaev, Z. Nikolov, A. Gotchev, K. Egiazarian, Wavelet domain Wiener filtering for ECG denoising using improved signal estimate, in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp. 3578–3581, Istanbul, Turkey, June 2000. N. Nikolaev, Z. Nikolov, A. Gotchev, K. Egiazarian, Wavelet domain Wiener filtering for ECG denoising using improved signal estimate, in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp. 3578–3581, Istanbul, Turkey, June 2000.
23.
go back to reference S. Poornachandra, Wavelet-based denoising using subband dependent threshold for ECG signals, in Digital Signal Processing, New York, 2008. S. Poornachandra, Wavelet-based denoising using subband dependent threshold for ECG signals, in Digital Signal Processing, New York, 2008.
24.
go back to reference S. Poungponsri, X. Yu, Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks, in 2009 IEEE International Conference on Automation and Logistics, pp. 394–398, Shenyang, China, 2009. S. Poungponsri, X. Yu, Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks, in 2009 IEEE International Conference on Automation and Logistics, pp. 394–398, Shenyang, China, 2009.
25.
go back to reference R. Sameni, M.B. Shamsollahi, C. Jutten, G.D. Clifford, A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54(12), 2172–2185 (2007)CrossRef R. Sameni, M.B. Shamsollahi, C. Jutten, G.D. Clifford, A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54(12), 2172–2185 (2007)CrossRef
26.
go back to reference P. M. Shemi, E. M. Shareena, Analysis of ECG signal denoising using discrete wavelet transform, in 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 713–718, Coimbatore, India, 2016. P. M. Shemi, E. M. Shareena, Analysis of ECG signal denoising using discrete wavelet transform, in 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 713–718, Coimbatore, India, 2016.
27.
go back to reference M. Talbi, M.S. Bouhlel, A novel technique of noise cancellation based on stationary bionic wavelet transform and WATV: Application for ECG denoising. Int. Arab J. Inf. Technol. 19(3), 381–387 (2022) M. Talbi, M.S. Bouhlel, A novel technique of noise cancellation based on stationary bionic wavelet transform and WATV: Application for ECG denoising. Int. Arab J. Inf. Technol. 19(3), 381–387 (2022)
28.
go back to reference Z. Wang, C. M. Wong, J. N. daCruz et al., Muscle and electrode motion artifacts reduction in ECG using adaptive Fourier decomposition, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1456–1461, San Diego, CA, USA, 2014. Z. Wang, C. M. Wong, J. N. daCruz et al., Muscle and electrode motion artifacts reduction in ECG using adaptive Fourier decomposition, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1456–1461, San Diego, CA, USA, 2014.
29.
go back to reference P. Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou, X. Liu, ECG signal enhancement based on improved denoising autoencoder. Eng. Appl. Artif. Intell. 52, 194–202 (2016)CrossRef P. Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou, X. Liu, ECG signal enhancement based on improved denoising autoencoder. Eng. Appl. Artif. Intell. 52, 194–202 (2016)CrossRef
31.
go back to reference Q. Zhang, Artificial intelligence-enabled ECG big data mining for pervasive heart health monitoring (Springer, Berlin, 2020)CrossRef Q. Zhang, Artificial intelligence-enabled ECG big data mining for pervasive heart health monitoring (Springer, Berlin, 2020)CrossRef
Metadata
Title
Electrocardiogram Denoising Based on SWT and WATV Using ANNs
Authors
Abdallah Rezgui
Brahim Nasraoui
Mourad Talbi
Publication date
08-02-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 5/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02590-1