Skip to main content
Top

2015 | OriginalPaper | Chapter

42. Electrocatalysis of Formic Acid Electro-Oxidation at Platinum Nanoparticles Modified Surfaces with Nickel and Cobalt Oxides Nanostructures

Authors : Gumaa A. El-Nagar, Ahmad M. Mohammad, Mohamed S. El-Deab, Bahgat E. El-Anadouli

Published in: Progress in Clean Energy, Volume 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study proposes a novel promising binary catalyst for formic acid electro-oxidation (FAO); the main anodic reaction in direct formic acid fuel cells (DFAFCs). The catalyst is basically composed of two metal oxides of nickel and cobalt nanostructures (i.e., NiOx and CoOx) assembled onto a platinum nanoparticles (PtNPs)−modified glassy carbon (Pt/GC) electrode. Actually, FAO proceeds at bare Pt surfaces in two parallel routes; one of them is desirable (called direct or hydrogenation) and occurred at a low potential domain (I p d ). While, the other (undesirable) involves the dehydration of formic acid (FA) at low potential domain to produce a poisoning intermediate (CO), which next be oxidized (indirect, I p ind ) at a higher potential domain after the platinum surface becomes hydroxylated. Unfortunately, the peak current ratio (I p d /I p ind ) of the two oxidation routes, which monitors the degree of the catalytic enhancement and the poisoning level, stands for bare Pt surfaces at a low value (less than 0.2). Interestingly, this ratio increased significantly as a result of the further modification of the Pt/GC electrode with NiOx \( \left({I}_{\mathrm{p}}^{\mathrm{d}}/{I}_{\mathrm{p}}^{\mathrm{ind}}=3\right) \), CoOx \( \left({I}_{\mathrm{p}}^{\mathrm{d}}/{I}_{\mathrm{p}}^{\mathrm{ind}}=4\right) \) and a binary mixture of both \( \left({I}_{\mathrm{p}}^{\mathrm{d}}/{I}_{\mathrm{p}}^{\mathrm{ind}}=15\right) \). This highlights the essential role of these in promoting the direct FAO, presumably via a mediation process that ultimately improved the oxidation kinetics or through a catalytic enhancement for the oxidation of the poisoning CO at the low potential domain of the direct FAO. The effect of the deposition order of NiOx and CoOx on the catalytic activity was addressed and fount influencing. The addition of CoOx to the catalyst was really important, particularly in improving the catalytic stability of the catalyst towards a long-term continuous electrolysis experiment, which actually imitates the real industrial applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baik SM, Kim J, Han J, Kwon Y (2011) Performance improvement in direct formic acid fuel cells (DFAFCs) using metal catalyst prepared by dual mode spraying. Int J Hydrog Energy 36:12583–12590CrossRef Baik SM, Kim J, Han J, Kwon Y (2011) Performance improvement in direct formic acid fuel cells (DFAFCs) using metal catalyst prepared by dual mode spraying. Int J Hydrog Energy 36:12583–12590CrossRef
2.
go back to reference Cai W, Liang L, Zhang Y, Xing W, Liu C (2013) Real contribution of formic acid in direct formic acid fuel cell: investigation of origin and guiding for micro structure design. Int J Hydrog Energy 38:212–218CrossRef Cai W, Liang L, Zhang Y, Xing W, Liu C (2013) Real contribution of formic acid in direct formic acid fuel cell: investigation of origin and guiding for micro structure design. Int J Hydrog Energy 38:212–218CrossRef
3.
go back to reference Hong P, Luo F, Liao S, Zeng J (2011) Effects of Pt/C, Pd/C and PdPt/C anode catalysts on the performance and stability of air breathing direct formic acid fuel cells. Int J Hydrog Energy 36:8518–8524CrossRef Hong P, Luo F, Liao S, Zeng J (2011) Effects of Pt/C, Pd/C and PdPt/C anode catalysts on the performance and stability of air breathing direct formic acid fuel cells. Int J Hydrog Energy 36:8518–8524CrossRef
4.
go back to reference Rhee Y-W, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion® membranes. J Power Sources 117:35–38CrossRef Rhee Y-W, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion® membranes. J Power Sources 117:35–38CrossRef
5.
go back to reference Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89CrossRef Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89CrossRef
6.
go back to reference Tsujiguchi T, Iwakami T, Hirano S, Nakagawa N (2014) Water transport characteristics of the passive direct formic acid fuel cell. J Power Sources 250:266–273CrossRef Tsujiguchi T, Iwakami T, Hirano S, Nakagawa N (2014) Water transport characteristics of the passive direct formic acid fuel cell. J Power Sources 250:266–273CrossRef
7.
go back to reference Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 124:124–132CrossRef Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 124:124–132CrossRef
8.
go back to reference El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2012) Facilitated electro-oxidation of formic acid at nickel oxide nanoparticles modified electrodes. J Electrochem Soc 159:F249–F254CrossRef El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2012) Facilitated electro-oxidation of formic acid at nickel oxide nanoparticles modified electrodes. J Electrochem Soc 159:F249–F254CrossRef
9.
go back to reference El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2013) Electrocatalysis by design: enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochim Acta 94:62–71CrossRef El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2013) Electrocatalysis by design: enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochim Acta 94:62–71CrossRef
10.
go back to reference El-Deab MS, Kibler LA, Kolb DM (2009) Enhanced electro-oxidation of formic acid at manganese oxide single crystalline nanorod-modified Pt electrodes. Electrochem Commun 11:776–778CrossRef El-Deab MS, Kibler LA, Kolb DM (2009) Enhanced electro-oxidation of formic acid at manganese oxide single crystalline nanorod-modified Pt electrodes. Electrochem Commun 11:776–778CrossRef
11.
go back to reference Habibi B, Delnavaz N (2011) Carbon–ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for oxidation of formic acid. Int J Hydrog Energy 36:9581–9590CrossRef Habibi B, Delnavaz N (2011) Carbon–ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for oxidation of formic acid. Int J Hydrog Energy 36:9581–9590CrossRef
12.
go back to reference Obradović MD, Rogan JR, Babić BM, Tripković AV, Gautam AS, Radmilović VR et al (2012) Formic acid oxidation on Pt–Au nanoparticles: relation between the catalyst activity and the poisoning rate. J Power Sources 197:72–79CrossRef Obradović MD, Rogan JR, Babić BM, Tripković AV, Gautam AS, Radmilović VR et al (2012) Formic acid oxidation on Pt–Au nanoparticles: relation between the catalyst activity and the poisoning rate. J Power Sources 197:72–79CrossRef
13.
go back to reference Tripković AV, Popović KD, Stevanović RM, Socha R, Kowal A (2006) Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochem Commun 8:1492–1498CrossRef Tripković AV, Popović KD, Stevanović RM, Socha R, Kowal A (2006) Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochem Commun 8:1492–1498CrossRef
14.
go back to reference Zhang S, Shao Y, Yin G, Lin Y (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195:1103–1106CrossRef Zhang S, Shao Y, Yin G, Lin Y (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195:1103–1106CrossRef
15.
go back to reference Rafailović LD, Karnthaler HP, Trišović T, Minić DM (2010) Microstructure and mechanical properties of disperse Ni–Co alloys electrodeposited on Cu substrates. Mater Chem Phys 120:409–416CrossRef Rafailović LD, Karnthaler HP, Trišović T, Minić DM (2010) Microstructure and mechanical properties of disperse Ni–Co alloys electrodeposited on Cu substrates. Mater Chem Phys 120:409–416CrossRef
16.
go back to reference Trasatti S, Petrii O (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376CrossRef Trasatti S, Petrii O (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376CrossRef
17.
go back to reference Deltombe E, De Zoubov N, Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions, vol 168. Pergamon Press, Oxford, pp 343–349 Deltombe E, De Zoubov N, Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions, vol 168. Pergamon Press, Oxford, pp 343–349
18.
go back to reference Giovanelli D, Lawrence NS, Jiang L, Jones TGJ, Compton RG (2003) Electrochemical determination of sulphide at nickel electrodes in alkaline media: a new electrochemical sensor. Sens Actuators B 88:320–328CrossRef Giovanelli D, Lawrence NS, Jiang L, Jones TGJ, Compton RG (2003) Electrochemical determination of sulphide at nickel electrodes in alkaline media: a new electrochemical sensor. Sens Actuators B 88:320–328CrossRef
19.
go back to reference Song Y, He Z, Zhu H, Hou H, Wang L (2011) Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode: application to some amino acids detection. Electrochim Acta 58:757–763CrossRef Song Y, He Z, Zhu H, Hou H, Wang L (2011) Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode: application to some amino acids detection. Electrochim Acta 58:757–763CrossRef
20.
go back to reference Švegl F, Orel B, Grabec-Švegl I, Kaučič V (2000) Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route. Electrochim Acta 45:4359–4371CrossRef Švegl F, Orel B, Grabec-Švegl I, Kaučič V (2000) Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route. Electrochim Acta 45:4359–4371CrossRef
21.
go back to reference Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRef Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRef
22.
go back to reference Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y (1989) Development of a pasted nickel electrode with high active material utilization. J Electrochem Soc 136:1590–1593CrossRef Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y (1989) Development of a pasted nickel electrode with high active material utilization. J Electrochem Soc 136:1590–1593CrossRef
23.
go back to reference Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2013) Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J Am Chem Soc 135:9991–9994CrossRef Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2013) Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J Am Chem Soc 135:9991–9994CrossRef
24.
go back to reference Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2014) The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim Acta 129:127–136CrossRef Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2014) The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim Acta 129:127–136CrossRef
25.
go back to reference Samjeské G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:16559–16566CrossRef Samjeské G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:16559–16566CrossRef
Metadata
Title
Electrocatalysis of Formic Acid Electro-Oxidation at Platinum Nanoparticles Modified Surfaces with Nickel and Cobalt Oxides Nanostructures
Authors
Gumaa A. El-Nagar
Ahmad M. Mohammad
Mohamed S. El-Deab
Bahgat E. El-Anadouli
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-16709-1_42