Skip to main content
Top
Published in: Journal of Materials Science 11/2018

20-02-2018 | Electronic materials

Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process

Authors: Govindhan Maduraiveeran, Manab Kundu, Manickam Sasidharan

Published in: Journal of Materials Science | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple electrochemical sensor platform for hydrogen peroxide (H2O2) using silver nanoparticles (Ag NPs) entrenched in silicate matrix (APS(SG)) is reported. The redox molecules such as potassium ferricyanide ([Fe(CN)6]3−), methyl viologen (MV2+) and ruthenium hexamine ([Ru(NH3)6]3+) were utilized to investigate the electron transfer behavior of the APS(SG)–Ag NPs. The glassy carbon (GC) electrode modified with amine-functionalized silicate sol–gel matrix (GC/APS(SG)) exhibited a complete suppression of the electrochemical response toward MV2+ and [Ru(NH3)6]3+. However, GC/APS(SG) electrode displayed a twofold increase in the peak currents and fast electron transfer kinetics toward [Fe(CN)6]3− in comparison with GC electrode, suggesting that GC/APS(SG) electrode demonstrated an excellent anion exchange property. The GC electrode modified with APS(SG)–Ag NPs (GC/APS(SG)–Ag NPs) showed an improved electron transfer kinetics when neither positive nor negative charge of the electroactive species in the electrolyte. The GC/APS(SG)–Ag NP electrode was effectively further applied for the electrocatalytic and sensor applications toward H2O2. The present sensor exhibited the reduction of H2O2 at less negative potential and showed the experimental low detection limit of 25.0 µM with the sensitivity of 0.042 µA/µM. In addition, the developed APS(SG)–Ag NP-based amperometric sensor presented fast response, good stability and reproducibility.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 31:13361–13372CrossRef Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 31:13361–13372CrossRef
2.
go back to reference Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754CrossRef Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754CrossRef
3.
go back to reference Padmos JD, Boudreau RT, Weaver DF, Zhang P (2015) Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 31:3745–3752CrossRef Padmos JD, Boudreau RT, Weaver DF, Zhang P (2015) Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 31:3745–3752CrossRef
4.
go back to reference Maduraiveeran G, Ramaraj R (2013) Silver nanoparticles embedded in functionalized silicate sol–gel network film as optical sensor for the detection of biomolecules. J Anal Chem 68:241–248CrossRef Maduraiveeran G, Ramaraj R (2013) Silver nanoparticles embedded in functionalized silicate sol–gel network film as optical sensor for the detection of biomolecules. J Anal Chem 68:241–248CrossRef
5.
go back to reference Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81:7552–7560CrossRef Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81:7552–7560CrossRef
6.
go back to reference Maduraiveeran G, Ramaraj R (2011) Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. J Nanopart Res 13:4267–4276CrossRef Maduraiveeran G, Ramaraj R (2011) Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. J Nanopart Res 13:4267–4276CrossRef
7.
go back to reference WelchC CM, BanksA E, SimmR O, Compton G (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21CrossRef WelchC CM, BanksA E, SimmR O, Compton G (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21CrossRef
8.
go back to reference Shu J, Qiu Z, Lv S, Zhang K, Tang D (2017) Cu2+-Doped SnO2 Nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing. Anal Chem 89:11135–11142CrossRef Shu J, Qiu Z, Lv S, Zhang K, Tang D (2017) Cu2+-Doped SnO2 Nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing. Anal Chem 89:11135–11142CrossRef
9.
go back to reference Shu J, Tang D (2017) Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem Asian J 12:2780–2789CrossRef Shu J, Tang D (2017) Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem Asian J 12:2780–2789CrossRef
10.
go back to reference Lin Y, Zhou Q, Tang D, Niessner R, Yang H, Knopp D (2016) Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal Chem 88:7858–7866CrossRef Lin Y, Zhou Q, Tang D, Niessner R, Yang H, Knopp D (2016) Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal Chem 88:7858–7866CrossRef
12.
go back to reference Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D (2016) Facile synthesis of enhanced fluorescent gold–silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal Chem 88:8886–8892CrossRef Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D (2016) Facile synthesis of enhanced fluorescent gold–silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal Chem 88:8886–8892CrossRef
13.
go back to reference Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10:0131178 Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10:0131178
14.
go back to reference Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D (2016) In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Talanta 146:23–28CrossRef Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D (2016) In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Talanta 146:23–28CrossRef
15.
go back to reference Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of kappa-carrageenan. Nanoscale Res Lett 10:916CrossRef Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of kappa-carrageenan. Nanoscale Res Lett 10:916CrossRef
16.
go back to reference Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (7):792–793 Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (7):792–793
17.
go back to reference Ahmed S, Ahmad M, Swami BL, Ikram SA (2016) Review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28CrossRef Ahmed S, Ahmad M, Swami BL, Ikram SA (2016) Review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28CrossRef
18.
go back to reference Oliveira JF, Cardoso MB (2014) Partial aggregation of silver nanoparticles induced by capping and reducing agents competition. Langmuir 30:4879–4886CrossRef Oliveira JF, Cardoso MB (2014) Partial aggregation of silver nanoparticles induced by capping and reducing agents competition. Langmuir 30:4879–4886CrossRef
19.
go back to reference Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stéphan O (2010) Electroless growth of silver nanoparticles into mesostructured silica block copolymer films. Langmuir 26:8729–8736CrossRef Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stéphan O (2010) Electroless growth of silver nanoparticles into mesostructured silica block copolymer films. Langmuir 26:8729–8736CrossRef
20.
go back to reference Brahmkhatri VP, Chandra K, Dubey A, Atreya HS (2015) An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions. Nanoscale 7:12921–12931CrossRef Brahmkhatri VP, Chandra K, Dubey A, Atreya HS (2015) An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions. Nanoscale 7:12921–12931CrossRef
21.
go back to reference Amato E, Diaz-Fernandez YA, Taglietti A, Pallavicini P, Pasotti L, Cucca L, Milanese C, Grisoli P, Dacarro C, Fernandez-Hechavarria JM, Necchi V (2011) Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27:9165–9173CrossRef Amato E, Diaz-Fernandez YA, Taglietti A, Pallavicini P, Pasotti L, Cucca L, Milanese C, Grisoli P, Dacarro C, Fernandez-Hechavarria JM, Necchi V (2011) Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27:9165–9173CrossRef
22.
go back to reference Amato E, Diaz-Fernandez YA, Taglietti A, Pallavicini P, Pasotti L, Cucca L, Milanese C, Grisoli P, Dacarro C, Fernandez-Hechavarria JM, Necchi V (2011) Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27:9165–9173CrossRef Amato E, Diaz-Fernandez YA, Taglietti A, Pallavicini P, Pasotti L, Cucca L, Milanese C, Grisoli P, Dacarro C, Fernandez-Hechavarria JM, Necchi V (2011) Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27:9165–9173CrossRef
23.
go back to reference He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using dimocarpus longan lour. Nanoscale Res Lett 11:300CrossRef He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using dimocarpus longan lour. Nanoscale Res Lett 11:300CrossRef
24.
go back to reference Liu CW, Lin YR, Fang CS, Latouche C, Kahlal S, Saillard JY (2013) [Ag7(H){E2P(OR)2}6] (E = Se, S): precursors for the fabrication of silver nanoparticles. Inorg Chem 52:2070–2277CrossRef Liu CW, Lin YR, Fang CS, Latouche C, Kahlal S, Saillard JY (2013) [Ag7(H){E2P(OR)2}6] (E = Se, S): precursors for the fabrication of silver nanoparticles. Inorg Chem 52:2070–2277CrossRef
25.
go back to reference Stamplecoskie KG, Scaiano JC (2011) Kinetics of the formation of silver dimers: early stages in the formation of silver nanoparticles. J Am Chem Soc 133:3913–3920CrossRef Stamplecoskie KG, Scaiano JC (2011) Kinetics of the formation of silver dimers: early stages in the formation of silver nanoparticles. J Am Chem Soc 133:3913–3920CrossRef
26.
go back to reference Govindhan M, Adhikari B-R, Chen A (2014) Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 4:63741–63760CrossRef Govindhan M, Adhikari B-R, Chen A (2014) Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 4:63741–63760CrossRef
27.
go back to reference Maduraiveeran G, Ramaraj R (2007) A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol–gel network for concurrent detection of toxic chemicals. Electrochem Commun 9:2051–2255CrossRef Maduraiveeran G, Ramaraj R (2007) A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol–gel network for concurrent detection of toxic chemicals. Electrochem Commun 9:2051–2255CrossRef
28.
go back to reference Maduraiveeran G, Ramaraj R (2007) Gold nanoparticles embedded in silica sol–gel matrix as an amperometric sensor for hydrogen peroxide. J Electroanal Chem 608:52–58CrossRef Maduraiveeran G, Ramaraj R (2007) Gold nanoparticles embedded in silica sol–gel matrix as an amperometric sensor for hydrogen peroxide. J Electroanal Chem 608:52–58CrossRef
29.
go back to reference Huang X, Xie L, Lin X, Su B (2016) Permselective ion transport across the nanoscopic liquid/liquid interface array. Anal Chem 88:6563–6569CrossRef Huang X, Xie L, Lin X, Su B (2016) Permselective ion transport across the nanoscopic liquid/liquid interface array. Anal Chem 88:6563–6569CrossRef
30.
go back to reference McDonald MB, Freund MS (2011) Novel conducting polymer-heteropoly acid hybrid material for artificial photosynthetic membranes. ACS Appl Mater Interfaces 3:1003–1008CrossRef McDonald MB, Freund MS (2011) Novel conducting polymer-heteropoly acid hybrid material for artificial photosynthetic membranes. ACS Appl Mater Interfaces 3:1003–1008CrossRef
31.
go back to reference Huang X, Dasgupta PK (2011) Controlled porosity monolithic material as permselective ion exchange membranes. Anal Chim Acta 689:155–159CrossRef Huang X, Dasgupta PK (2011) Controlled porosity monolithic material as permselective ion exchange membranes. Anal Chim Acta 689:155–159CrossRef
32.
go back to reference Kent CA, Concepcion JJ, Dares CJ, Torelli DA, Rieth AJ, Miller AS, Hoertz PG, Meyer TJ (2013) Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes. J Am Chem Soc 135:8432–8435CrossRef Kent CA, Concepcion JJ, Dares CJ, Torelli DA, Rieth AJ, Miller AS, Hoertz PG, Meyer TJ (2013) Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes. J Am Chem Soc 135:8432–8435CrossRef
33.
go back to reference Furst AL, Hill MG, Barton JK (2013) DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection. Langmuir 29:16141–16149CrossRef Furst AL, Hill MG, Barton JK (2013) DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection. Langmuir 29:16141–16149CrossRef
34.
go back to reference Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4:4594–4602CrossRef Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4:4594–4602CrossRef
35.
go back to reference Ray C, Dutta S, Roy A, Sahoo R, Pal T (2016) Redox mediated synthesis of hierarchical Bi2O3/MnO2 nanoflowers: a non-enzymatic hydrogen peroxide electrochemical sensor. Dalton Trans 45:4780–4790CrossRef Ray C, Dutta S, Roy A, Sahoo R, Pal T (2016) Redox mediated synthesis of hierarchical Bi2O3/MnO2 nanoflowers: a non-enzymatic hydrogen peroxide electrochemical sensor. Dalton Trans 45:4780–4790CrossRef
36.
go back to reference Kim Y, Park JY, Kim HY, Lee M, Yi J, Choi I (2015) A single nanoparticle-based sensor for hydrogen peroxide (H2O2) via cytochrome c-mediated plasmon resonance energy transfer. Chem Commun 51:15370–15373CrossRef Kim Y, Park JY, Kim HY, Lee M, Yi J, Choi I (2015) A single nanoparticle-based sensor for hydrogen peroxide (H2O2) via cytochrome c-mediated plasmon resonance energy transfer. Chem Commun 51:15370–15373CrossRef
37.
go back to reference Wu H, Fan S, Jin X, Zhang H, Chen H, Dai Z, Zou X (2014) Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal Chem 86:6285–6290CrossRef Wu H, Fan S, Jin X, Zhang H, Chen H, Dai Z, Zou X (2014) Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal Chem 86:6285–6290CrossRef
38.
go back to reference Koposova E, Liu X, Kisner A, Ermolenko Y, Shumilova G, Offenhäusser A, Mourzina Y (2014) Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens Bioelectron 57:54–58CrossRef Koposova E, Liu X, Kisner A, Ermolenko Y, Shumilova G, Offenhäusser A, Mourzina Y (2014) Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens Bioelectron 57:54–58CrossRef
39.
go back to reference Fang KC, Hsu CP, Kang YW, Fang JY, Huang CC, Hsu CH, Huang YF, Chen CC, Li SS, Andrew Yeh J, Yao DJ, Wang YL (2014) Realization of an ultra-sensitive hydrogen peroxide sensor with conductance change of horseradish peroxidase-immobilized polyaniline and investigation of the sensing mechanism. Biosens Bioelectron 55:294–300CrossRef Fang KC, Hsu CP, Kang YW, Fang JY, Huang CC, Hsu CH, Huang YF, Chen CC, Li SS, Andrew Yeh J, Yao DJ, Wang YL (2014) Realization of an ultra-sensitive hydrogen peroxide sensor with conductance change of horseradish peroxidase-immobilized polyaniline and investigation of the sensing mechanism. Biosens Bioelectron 55:294–300CrossRef
40.
go back to reference Ansari AA, Solanki PR, Malhotra BD (2009) Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J Biotechnol 142:179–184CrossRef Ansari AA, Solanki PR, Malhotra BD (2009) Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J Biotechnol 142:179–184CrossRef
41.
go back to reference Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304CrossRef Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304CrossRef
42.
go back to reference Mao BH, Chang R, Shi L, Zhuo QQ, Rani S, Liu XS, Tyo EC, Vajda S, Wang SD, Liu Z (2014) A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports. Phys Chem Chem Phys 16:26645–26652CrossRef Mao BH, Chang R, Shi L, Zhuo QQ, Rani S, Liu XS, Tyo EC, Vajda S, Wang SD, Liu Z (2014) A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports. Phys Chem Chem Phys 16:26645–26652CrossRef
43.
go back to reference Nash CK, Fritsch I (2016) Poly(3,4-ethylenedioxythiophene)-modified electrodes for microfluidics pumping with redox-magnetohydrodynamics: improving compatibility for broader applications by eliminating addition of redox species to solution. Anal Chem 88:1601–1609CrossRef Nash CK, Fritsch I (2016) Poly(3,4-ethylenedioxythiophene)-modified electrodes for microfluidics pumping with redox-magnetohydrodynamics: improving compatibility for broader applications by eliminating addition of redox species to solution. Anal Chem 88:1601–1609CrossRef
44.
go back to reference Goran JM, Stevenson KJ (2013) Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes. Langmuir 29:13605–13613CrossRef Goran JM, Stevenson KJ (2013) Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes. Langmuir 29:13605–13613CrossRef
45.
go back to reference Choi EY, Azzaroni O, Cheng N, Zhou F, Kelby T, Huck WT (2007) Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions. Langmuir 23:10389–10394CrossRef Choi EY, Azzaroni O, Cheng N, Zhou F, Kelby T, Huck WT (2007) Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions. Langmuir 23:10389–10394CrossRef
46.
go back to reference Fan FR, Bard AJ (1995) Electrochemical detection of single molecules. Science 267:871–874CrossRef Fan FR, Bard AJ (1995) Electrochemical detection of single molecules. Science 267:871–874CrossRef
47.
go back to reference Thenmozhi K, Sriman Narayanan S (2007) Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Anal Bioanal Chem 387:1075–1082CrossRef Thenmozhi K, Sriman Narayanan S (2007) Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Anal Bioanal Chem 387:1075–1082CrossRef
48.
go back to reference Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens Actuators B 143:539–546CrossRef Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens Actuators B 143:539–546CrossRef
49.
go back to reference Hromadová M, Kolivoška V, Sokolová R, Gál M, Pospíšil L, Valášek M (2010) On the adsorption of extended viologens at the electrode|electrolyte interface. Langmuir 26:17232–17236CrossRef Hromadová M, Kolivoška V, Sokolová R, Gál M, Pospíšil L, Valášek M (2010) On the adsorption of extended viologens at the electrode|electrolyte interface. Langmuir 26:17232–17236CrossRef
50.
go back to reference Freitag M, Galoppini E (2010) Cucurbituril complexes of viologens bound to TiO2 films. Langmuir 26:8262–8269CrossRef Freitag M, Galoppini E (2010) Cucurbituril complexes of viologens bound to TiO2 films. Langmuir 26:8262–8269CrossRef
51.
go back to reference Ogawa M, Balan B, Ajayakumar G, Masaoka S, Kraatz HB, Muramatsu M, Ito S, Nagasawa Y, Miyasaka H, Sakai K (2010) Photoinduced electron transfer in tris(2,2′-bipyridine)ruthenium(II)-viologen dyads with peptide backbones leading to long-lived charge separation and hydrogen evolution. Dalton Trans 39:4421–4434CrossRef Ogawa M, Balan B, Ajayakumar G, Masaoka S, Kraatz HB, Muramatsu M, Ito S, Nagasawa Y, Miyasaka H, Sakai K (2010) Photoinduced electron transfer in tris(2,2′-bipyridine)ruthenium(II)-viologen dyads with peptide backbones leading to long-lived charge separation and hydrogen evolution. Dalton Trans 39:4421–4434CrossRef
52.
go back to reference Govindhan M, Lafleur T, Adhikari BR, Chen A (2015) Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanal 27:902–909CrossRef Govindhan M, Lafleur T, Adhikari BR, Chen A (2015) Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanal 27:902–909CrossRef
53.
go back to reference Govindhan M, Amiri M (2015) Chen A (2015) Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens Bioelectron 66:474–480CrossRef Govindhan M, Amiri M (2015) Chen A (2015) Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens Bioelectron 66:474–480CrossRef
54.
go back to reference Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 15:22490–22508CrossRef Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 15:22490–22508CrossRef
55.
go back to reference Cai X, Tanner EEL, Lin C, Ngamchue K, Foord JS, Compton RG (2018) The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Phys Chem Chem Phys 20:1608–1614CrossRef Cai X, Tanner EEL, Lin C, Ngamchue K, Foord JS, Compton RG (2018) The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Phys Chem Chem Phys 20:1608–1614CrossRef
56.
go back to reference Tsaplev YB (2012) Chemiluminescence determination of hydrogen peroxide. J Anal Chem 67:506–514CrossRef Tsaplev YB (2012) Chemiluminescence determination of hydrogen peroxide. J Anal Chem 67:506–514CrossRef
57.
go back to reference Olenin AY, Olenin EG (2017) Spectrophotometric nonenzymatic determination of hydrogen peroxide using silver nanoparticles. J Anal Chem 72:234–238CrossRef Olenin AY, Olenin EG (2017) Spectrophotometric nonenzymatic determination of hydrogen peroxide using silver nanoparticles. J Anal Chem 72:234–238CrossRef
Metadata
Title
Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process
Authors
Govindhan Maduraiveeran
Manab Kundu
Manickam Sasidharan
Publication date
20-02-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2141-7

Other articles of this Issue 11/2018

Journal of Materials Science 11/2018 Go to the issue

Premium Partners