Skip to main content
Top

2017 | OriginalPaper | Chapter

Electrochemical Energy Production Using Fuel Cell Technologies

Authors : Viola Birss, Ehab El Sawy, Sanaz Ketabi, Parastoo Keyvanfar, Xiaoan Li, Jason Young

Published in: Handbook of Industrial Chemistry and Biotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fuel cells are highly efficient and environmentally friendly energy conversion devices that are receiving increasing attention and are steadily moving toward commercialization. Fuel cells deliver electricity and heat, based on the spontaneous electrochemical oxidation of fuels at the anode and the reduction of oxygen at the cathode, without combustion. In many ways, fuel cells are similar to batteries, although they do not require recharging and operate as long as fuel continues to be provided. There are four leading types of fuels reviewed in this chapter, proton exchange membrane fuel cells (PEMFCs) operating on clean hydrogen, direct alcohol (primarily methanol) fuel cells (DAFCs), solid oxide fuel cells (SOFCs), and molten carbonate fuel cells (MCFCs). PEMFCs and DAFCs normally operate at below 100 °C and are targeted primarily for transportation and mobile applications, while SOFCs and MCFCs, which run at temperatures above 600 °C, can run on a wide variety of fuels and are intended mostly for stationary combined heat and power applications. This review is focused primarily on a description of each of these technologies, with an emphasis on the materials used in the electrodes, the electrolyte that separates them, and the current collectors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York
2.
go back to reference O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, New York O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, New York
3.
go back to reference Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612CrossRef Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612CrossRef
4.
go back to reference Hayashi A, Notsu H, Kimijima KI, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53:6117–6125CrossRef Hayashi A, Notsu H, Kimijima KI, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53:6117–6125CrossRef
5.
go back to reference Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) Methods to advance technology of proton-exchange membrane fuel-cells. J Electrochem Soc 135:2209–2214CrossRef Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) Methods to advance technology of proton-exchange membrane fuel-cells. J Electrochem Soc 135:2209–2214CrossRef
6.
go back to reference Do J-S, Liou B-C (2011) A mixture design approach to optimizing the cathodic compositions of proton exchange membrane fuel cell. J Power Sources 196:1864–1871CrossRef Do J-S, Liou B-C (2011) A mixture design approach to optimizing the cathodic compositions of proton exchange membrane fuel cell. J Power Sources 196:1864–1871CrossRef
7.
go back to reference Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2003) Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochim Acta 48:4175–4187CrossRef Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2003) Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochim Acta 48:4175–4187CrossRef
8.
go back to reference Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L (2001) Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 46:799–805CrossRef Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L (2001) Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 46:799–805CrossRef
9.
go back to reference Wang QP, Eikerling M, Song DT, Liu ZS (2004) Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells. J Electroanal Chem 573:61–69 Wang QP, Eikerling M, Song DT, Liu ZS (2004) Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells. J Electroanal Chem 573:61–69
10.
go back to reference James BD, Baum KN, Spisak AB (2012) Mass production cost estimation of direct H2 PEM fuel cell systems for automotive applications: 2011 update; AGB-0-40628-01; Strategic Analysis Inc.: Arlington, 5 Sept 2012 James BD, Baum KN, Spisak AB (2012) Mass production cost estimation of direct H2 PEM fuel cell systems for automotive applications: 2011 update; AGB-0-40628-01; Strategic Analysis Inc.: Arlington, 5 Sept 2012
11.
go back to reference Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288CrossRef Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288CrossRef
12.
go back to reference Lott KF, Ghosh BD, Ritchie JE (2005) Measurement of anion diffusion and transference numbers in an anhydrous proton conducting electrolyte. Electrochem Solid-State Lett 8:A513–A515CrossRef Lott KF, Ghosh BD, Ritchie JE (2005) Measurement of anion diffusion and transference numbers in an anhydrous proton conducting electrolyte. Electrochem Solid-State Lett 8:A513–A515CrossRef
13.
go back to reference Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water-uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140:1041–1047CrossRef Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water-uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140:1041–1047CrossRef
14.
go back to reference Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel-cell model. J Electrochem Soc 138:2334–2342CrossRef Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel-cell model. J Electrochem Soc 138:2334–2342CrossRef
15.
go back to reference Hsu WY, Gierke TD (1983) Ion transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307–326CrossRef Hsu WY, Gierke TD (1983) Ion transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307–326CrossRef
16.
go back to reference Gierke TD, Munn GE, Wilson FC (1981) The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci Polym Phys Ed 19:1687–1704CrossRef Gierke TD, Munn GE, Wilson FC (1981) The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci Polym Phys Ed 19:1687–1704CrossRef
17.
go back to reference Hsu WY, Gierke TD (1982) Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15:101–105CrossRef Hsu WY, Gierke TD (1982) Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15:101–105CrossRef
18.
go back to reference Fujimura M, Hashimoto T, Kawai H (1981) Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 14:1309–1315CrossRef Fujimura M, Hashimoto T, Kawai H (1981) Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 14:1309–1315CrossRef
19.
go back to reference Fujimura M, Hashimoto T, Kawai H (1982) Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 15:136–144CrossRef Fujimura M, Hashimoto T, Kawai H (1982) Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 15:136–144CrossRef
20.
go back to reference Dreyfus B, Gebel G, Aldebert P, Pineri M, Escoubes M, Thomas M (1990) Distribution of the “micelles” in hydrated perfluorinated ionomer membranes from SANS experiments. J Phys 51:1341–1354CrossRef Dreyfus B, Gebel G, Aldebert P, Pineri M, Escoubes M, Thomas M (1990) Distribution of the “micelles” in hydrated perfluorinated ionomer membranes from SANS experiments. J Phys 51:1341–1354CrossRef
21.
go back to reference Litt M (1997) A reevaluation of Nafion® morphology. Abstracts of Papers of the American Chemical Society 213, 33-POLY Litt M (1997) A reevaluation of Nafion® morphology. Abstracts of Papers of the American Chemical Society 213, 33-POLY
22.
go back to reference Haubold HG, Vad T, Jungbluth H, Hiller P (2001) Nano structure of NAFION: a SAXS study. Electrochim Acta 46:1559–1563CrossRef Haubold HG, Vad T, Jungbluth H, Hiller P (2001) Nano structure of NAFION: a SAXS study. Electrochim Acta 46:1559–1563CrossRef
23.
go back to reference Rubatat L, Rollet AL, Gebel G, Diat O (2002) Evidence of Elongated Polymeric Aggregates in Nafion. Macromolecules 35:4050–4055CrossRef Rubatat L, Rollet AL, Gebel G, Diat O (2002) Evidence of Elongated Polymeric Aggregates in Nafion. Macromolecules 35:4050–4055CrossRef
24.
go back to reference Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41:5829–5838CrossRef Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41:5829–5838CrossRef
25.
go back to reference Andersen SM, Borghei M, Dhiman R, Ruiz V, Kauppinen E, Skou E (2014) Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. J Phys Chem C 118:10814–10823CrossRef Andersen SM, Borghei M, Dhiman R, Ruiz V, Kauppinen E, Skou E (2014) Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. J Phys Chem C 118:10814–10823CrossRef
26.
go back to reference Wood DL, Chlistunoff J, Majewski J, Borup RL (2009) Nafion structural phenomena at platinum and carbon interfaces. J Am Chem Soc 131:18096–18104CrossRef Wood DL, Chlistunoff J, Majewski J, Borup RL (2009) Nafion structural phenomena at platinum and carbon interfaces. J Am Chem Soc 131:18096–18104CrossRef
27.
go back to reference Paul DK, Fraser A, Karan K (2011) Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochem Commun 13:774–777CrossRef Paul DK, Fraser A, Karan K (2011) Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochem Commun 13:774–777CrossRef
28.
go back to reference Carlson EJ, Kopf P, Sinha J, Sriramulu S, Yang Y (2005) Cost analysis of PEM fuel cell systems for transportation; NREL/SR-560-39104; U.S. Department of Energy, Cambridge, 30 Sept 2005 Carlson EJ, Kopf P, Sinha J, Sriramulu S, Yang Y (2005) Cost analysis of PEM fuel cell systems for transportation; NREL/SR-560-39104; U.S. Department of Energy, Cambridge, 30 Sept 2005
29.
go back to reference Ji M, Wei Z (2009) A review of water management in polymer electrolyte membrane fuel cells. Energies 2:1057CrossRef Ji M, Wei Z (2009) A review of water management in polymer electrolyte membrane fuel cells. Energies 2:1057CrossRef
30.
go back to reference Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48CrossRef Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48CrossRef
31.
go back to reference Hongsirikarn K, Mo X, Goodwin JG Jr, Creager S (2011) Effect of H2O2 on Nafion® properties and conductivity at fuel cell conditions. J Power Sources 196:3060–3072CrossRef Hongsirikarn K, Mo X, Goodwin JG Jr, Creager S (2011) Effect of H2O2 on Nafion® properties and conductivity at fuel cell conditions. J Power Sources 196:3060–3072CrossRef
32.
go back to reference Qiao JL, Saito M, Hayamizu K, Okada T (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J Electrochem Soc 153:A967–A974CrossRef Qiao JL, Saito M, Hayamizu K, Okada T (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J Electrochem Soc 153:A967–A974CrossRef
33.
go back to reference Chen C, Levitin G, Hess DW, Fuller TF (2007) XPS investigation of Nafion® membrane degradation. J Power Sources 169:288–295CrossRef Chen C, Levitin G, Hess DW, Fuller TF (2007) XPS investigation of Nafion® membrane degradation. J Power Sources 169:288–295CrossRef
34.
go back to reference Mittal VO, Kunz HR, Fenton JM (2006) Is H2O2 involved in the membrane degradation mechanism in PEMFC? Electrochem Solid-State Lett 9:A299–A302CrossRef Mittal VO, Kunz HR, Fenton JM (2006) Is H2O2 involved in the membrane degradation mechanism in PEMFC? Electrochem Solid-State Lett 9:A299–A302CrossRef
35.
go back to reference Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555CrossRef Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555CrossRef
36.
go back to reference LaConti AB, Hamdan M, McDonald RC (2010) Mechanisms of membrane degradation. In: Handbook of fuel cells. Wiley, New York LaConti AB, Hamdan M, McDonald RC (2010) Mechanisms of membrane degradation. In: Handbook of fuel cells. Wiley, New York
37.
go back to reference Escobedo G, Raiford K, Nagarajan GS, Schwiebert KE (2006) Strategies for mitigation of PFSA polymer degradation in PEM fuel cells. ECS Trans 1(8):303–311CrossRef Escobedo G, Raiford K, Nagarajan GS, Schwiebert KE (2006) Strategies for mitigation of PFSA polymer degradation in PEM fuel cells. ECS Trans 1(8):303–311CrossRef
38.
go back to reference Stone C, Calis GHM (2006) 2006 Fuel Cell Seminar Abstracts, Hawaii. Courtesy Associates, Hawaii Stone C, Calis GHM (2006) 2006 Fuel Cell Seminar Abstracts, Hawaii. Courtesy Associates, Hawaii
39.
go back to reference Liu W, Ruth K, Rusch G (2001) Membrane durability in PEM fuel cells. J New Mater Electrochem Syst 4:227–232 Liu W, Ruth K, Rusch G (2001) Membrane durability in PEM fuel cells. J New Mater Electrochem Syst 4:227–232
40.
go back to reference Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo NT, Beuscher U (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158:446–454CrossRef Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo NT, Beuscher U (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158:446–454CrossRef
41.
go back to reference Zhang J, Litteer BA, Gu W, Liu H, Gasteiger HA (2007) Effect of hydrogen and oxygen partial pressure on pt precipitation within the membrane of PEMFCs. J Electrochem Soc 154:B1006–B1011CrossRef Zhang J, Litteer BA, Gu W, Liu H, Gasteiger HA (2007) Effect of hydrogen and oxygen partial pressure on pt precipitation within the membrane of PEMFCs. J Electrochem Soc 154:B1006–B1011CrossRef
42.
go back to reference Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef
43.
go back to reference Ramaswamy P, Wong NE, Shimizu GKH (2014) MOFs as proton conductors—challenges and opportunities. Chem Soc Rev 43:5913–5932CrossRef Ramaswamy P, Wong NE, Shimizu GKH (2014) MOFs as proton conductors—challenges and opportunities. Chem Soc Rev 43:5913–5932CrossRef
44.
go back to reference Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski IL, Shimizu GKH (2009) Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nat Chem 1:705–710CrossRef Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski IL, Shimizu GKH (2009) Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nat Chem 1:705–710CrossRef
45.
go back to reference Stassi A, Gatto I, Passalacqua E, Antonucci V, Arico AS, Merlo L, Oldani C, Pagano E (2011) Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J Power Sources 196:8925–8930CrossRef Stassi A, Gatto I, Passalacqua E, Antonucci V, Arico AS, Merlo L, Oldani C, Pagano E (2011) Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J Power Sources 196:8925–8930CrossRef
46.
go back to reference Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef
47.
go back to reference Kaliaguine S, Mikhailenko SD, Wang KP, Xing P, Robertson G, Guiver M (2003) Properties of SPEEK based PEMs for fuel cell application. Catal Today 82:213–222CrossRef Kaliaguine S, Mikhailenko SD, Wang KP, Xing P, Robertson G, Guiver M (2003) Properties of SPEEK based PEMs for fuel cell application. Catal Today 82:213–222CrossRef
48.
go back to reference Robertson GP, Mikhailenko SD, Wang K, Xing P, Guiver MD, Kaliaguine S (2003) Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. J Membr Sci 219:113–121CrossRef Robertson GP, Mikhailenko SD, Wang K, Xing P, Guiver MD, Kaliaguine S (2003) Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. J Membr Sci 219:113–121CrossRef
49.
go back to reference Asensio JA, Borros S, Gomez-Romero P (2002) Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J Polym Sci A Polym Chem 40:3703–3710CrossRef Asensio JA, Borros S, Gomez-Romero P (2002) Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J Polym Sci A Polym Chem 40:3703–3710CrossRef
50.
go back to reference Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles—a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles—a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef
51.
go back to reference Sheng L, Xu H, Guo X, Fang J, Fang L, Yin J (2011) Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4,6-bis(4-carboxyphenoxy)benzene-1,3-disulfonate. J Power Sources 196:3039–3047CrossRef Sheng L, Xu H, Guo X, Fang J, Fang L, Yin J (2011) Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4,6-bis(4-carboxyphenoxy)benzene-1,3-disulfonate. J Power Sources 196:3039–3047CrossRef
52.
go back to reference Bozkurt A, Meyer WH (2001) Proton-conducting poly(vinylpyrrolidone)–polyphosphoric acid blends. J Polym Sci B Polym Phys 39:1987–1994CrossRef Bozkurt A, Meyer WH (2001) Proton-conducting poly(vinylpyrrolidone)–polyphosphoric acid blends. J Polym Sci B Polym Phys 39:1987–1994CrossRef
53.
go back to reference Kreuer KD (1997) On the development of proton conducting materials for technological applications. Solid State Ionics 97:1–15CrossRef Kreuer KD (1997) On the development of proton conducting materials for technological applications. Solid State Ionics 97:1–15CrossRef
54.
go back to reference Erdemi H, Bozkurt A, Meyer WH (2004) PAMPSA–IM based proton conducting polymer electrolytes. Synth Met 143:133–138CrossRef Erdemi H, Bozkurt A, Meyer WH (2004) PAMPSA–IM based proton conducting polymer electrolytes. Synth Met 143:133–138CrossRef
55.
go back to reference Sevil F, Bozkurt A (2004) Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. J Phys Chem Solids 65:1659–1662CrossRef Sevil F, Bozkurt A (2004) Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. J Phys Chem Solids 65:1659–1662CrossRef
56.
go back to reference Günday ST, Bozkurt A, Meyer WH, Wegner G (2006) Effects of different acid functional groups on proton conductivity of polymer-1,2,4-triazole blends. J Polym Sci B Polym Phys 44:3315–3322CrossRef Günday ST, Bozkurt A, Meyer WH, Wegner G (2006) Effects of different acid functional groups on proton conductivity of polymer-1,2,4-triazole blends. J Polym Sci B Polym Phys 44:3315–3322CrossRef
57.
go back to reference Göktepe F, Bozkurt A, Günday ŞT (2008) Synthesis and proton conductivity of poly(styrene sulfonic acid)/heterocycle-based membranes. Polym Int 57:133–138CrossRef Göktepe F, Bozkurt A, Günday ŞT (2008) Synthesis and proton conductivity of poly(styrene sulfonic acid)/heterocycle-based membranes. Polym Int 57:133–138CrossRef
58.
go back to reference Dupuis A-C (2011) Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Prog Mater Sci 56:289–327CrossRef Dupuis A-C (2011) Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Prog Mater Sci 56:289–327CrossRef
59.
go back to reference Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef
60.
go back to reference Xing D, He G, Hou Z, Ming P, Song S (2011) Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int J Hydrog Energy 36:2177–2183CrossRef Xing D, He G, Hou Z, Ming P, Song S (2011) Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int J Hydrog Energy 36:2177–2183CrossRef
61.
go back to reference Sancho T, Soler J, Pina MP (2007) Conductivity in zeolite–polymer composite membranes for PEMFCs. J Power Sources 169:92–97CrossRef Sancho T, Soler J, Pina MP (2007) Conductivity in zeolite–polymer composite membranes for PEMFCs. J Power Sources 169:92–97CrossRef
62.
go back to reference Zarrin H, Higgins D, Jun Y, Chen ZW, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781CrossRef Zarrin H, Higgins D, Jun Y, Chen ZW, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781CrossRef
63.
go back to reference Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef
64.
go back to reference Holton OT, Stevenson JW (2013) The role of platinum in proton exchange membrane fuel cells evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell. Platin Met Rev 57:259–271CrossRef Holton OT, Stevenson JW (2013) The role of platinum in proton exchange membrane fuel cells evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell. Platin Met Rev 57:259–271CrossRef
65.
go back to reference O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, New York, pp 95–96 O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, New York, pp 95–96
66.
go back to reference Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef
67.
go back to reference Mistry H, Varela AS, Kühl S, Strasser P, Cuenya BR (2016) Nanostructured electrocatalysts with tunable activity and selectivity. Nat Rev Mater 1:16009CrossRef Mistry H, Varela AS, Kühl S, Strasser P, Cuenya BR (2016) Nanostructured electrocatalysts with tunable activity and selectivity. Nat Rev Mater 1:16009CrossRef
68.
go back to reference Bi W, Gray GE, Fuller TF (2007) PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte. Electrochem Solid-State Lett 10:B101–B104CrossRef Bi W, Gray GE, Fuller TF (2007) PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte. Electrochem Solid-State Lett 10:B101–B104CrossRef
69.
go back to reference Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163:76–81CrossRef Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163:76–81CrossRef
70.
go back to reference Das PK, Li X, Liu Z-S (2010) Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. Int J Hydrog Energy 35:2403–2416CrossRef Das PK, Li X, Liu Z-S (2010) Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. Int J Hydrog Energy 35:2403–2416CrossRef
71.
go back to reference Li A, Chan SH, Nguyen N-t (2009) Anti-flooding cathode catalyst layer for high performance PEM fuel cell. Electrochem Commun 11:897–900CrossRef Li A, Chan SH, Nguyen N-t (2009) Anti-flooding cathode catalyst layer for high performance PEM fuel cell. Electrochem Commun 11:897–900CrossRef
72.
go back to reference Li H, Tang Y, Wang Z, Shi Z, Wu S, Song D, Zhang J, Fatih K, Zhang J, Wang H, Liu Z, Abouatallah R, Mazza A (2008) A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources 178:103–117CrossRef Li H, Tang Y, Wang Z, Shi Z, Wu S, Song D, Zhang J, Fatih K, Zhang J, Wang H, Liu Z, Abouatallah R, Mazza A (2008) A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources 178:103–117CrossRef
73.
go back to reference Lim C, Wang CY (2004) Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim Acta 49:4149–4156CrossRef Lim C, Wang CY (2004) Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim Acta 49:4149–4156CrossRef
74.
go back to reference Lin GY, Van Nguyen T (2005) Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J Electrochem Soc 152:A1942–A1948CrossRef Lin GY, Van Nguyen T (2005) Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J Electrochem Soc 152:A1942–A1948CrossRef
75.
go back to reference Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex situ and in situ stability studies of PEMFC catalysts. J Electrochem Soc 152:A2309–A2315CrossRef Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex situ and in situ stability studies of PEMFC catalysts. J Electrochem Soc 152:A2309–A2315CrossRef
76.
go back to reference Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35CrossRef Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35CrossRef
78.
go back to reference Jha N, Ramesh P, Bekyarova E, Tian X, Wang F, Itkis ME, Haddon RC (2013) Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci Rep 3:2257CrossRef Jha N, Ramesh P, Bekyarova E, Tian X, Wang F, Itkis ME, Haddon RC (2013) Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci Rep 3:2257CrossRef
79.
go back to reference Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192CrossRef Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192CrossRef
80.
go back to reference Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrog Energy 37:357–372CrossRef Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrog Energy 37:357–372CrossRef
81.
go back to reference Liu Z, Gan LM, Hong L, Chen W, Lee JY (2005) Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J Power Sources 139:73–78CrossRef Liu Z, Gan LM, Hong L, Chen W, Lee JY (2005) Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J Power Sources 139:73–78CrossRef
82.
go back to reference Moreira J, del Angel P, Ocampo AL, Sebastián PJ, Montoya JA, Castellanos RH (2004) Synthesis, characterization and application of a Pd/Vulcan and Pd/C catalyst in a PEM fuel cell. Int J Hydrog Energy 29:915–920CrossRef Moreira J, del Angel P, Ocampo AL, Sebastián PJ, Montoya JA, Castellanos RH (2004) Synthesis, characterization and application of a Pd/Vulcan and Pd/C catalyst in a PEM fuel cell. Int J Hydrog Energy 29:915–920CrossRef
83.
go back to reference Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76CrossRef Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76CrossRef
84.
go back to reference Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24CrossRef Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24CrossRef
85.
go back to reference Banham D, Feng F, Fürstenhaupt T, Pei K, Ye S, Birss V (2011) Effect of Pt-loaded carbon support nanostructure on oxygen reduction catalysis. J Power Sources 196:5438–5445CrossRef Banham D, Feng F, Fürstenhaupt T, Pei K, Ye S, Birss V (2011) Effect of Pt-loaded carbon support nanostructure on oxygen reduction catalysis. J Power Sources 196:5438–5445CrossRef
86.
go back to reference Chang H, Joo SH, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cell applications. J Mater Chem 17:3078–3088CrossRef Chang H, Joo SH, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cell applications. J Mater Chem 17:3078–3088CrossRef
87.
go back to reference Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159CrossRef Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159CrossRef
88.
go back to reference Zhang W, Sherrell P, Minett AI, Razal JM, Chen J (2010) Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ Sci 3:1286–1293CrossRef Zhang W, Sherrell P, Minett AI, Razal JM, Chen J (2010) Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ Sci 3:1286–1293CrossRef
89.
go back to reference Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172CrossRef Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172CrossRef
90.
go back to reference Pei K, Banham D, Feng F, Fuerstenhaupt T, Ye S, Birss V (2010) Oxygen reduction activity dependence on the mesoporous structure of imprinted carbon supports. Electrochem Commun 12:1666–1669CrossRef Pei K, Banham D, Feng F, Fuerstenhaupt T, Ye S, Birss V (2010) Oxygen reduction activity dependence on the mesoporous structure of imprinted carbon supports. Electrochem Commun 12:1666–1669CrossRef
91.
go back to reference Banham D, Feng F, Pei K, Ye S, Birss V (2013) Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. J Mater Chem A 1:2812–2820CrossRef Banham D, Feng F, Pei K, Ye S, Birss V (2013) Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. J Mater Chem A 1:2812–2820CrossRef
92.
go back to reference Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094CrossRef Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094CrossRef
93.
go back to reference Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl 47:3696–3717CrossRef Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl 47:3696–3717CrossRef
94.
go back to reference Chuenchom L, Kraehnert R, Smarsly BM (2012) Recent progress in soft-templating of porous carbon materials. Soft Matter 8:10801–10812CrossRef Chuenchom L, Kraehnert R, Smarsly BM (2012) Recent progress in soft-templating of porous carbon materials. Soft Matter 8:10801–10812CrossRef
95.
go back to reference Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 14:478–486CrossRef Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 14:478–486CrossRef
96.
go back to reference Li ZJ, Jaroniec M (2001) Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J Am Chem Soc 123:9208–9209CrossRef Li ZJ, Jaroniec M (2001) Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J Am Chem Soc 123:9208–9209CrossRef
97.
go back to reference Banham D, Feng F, Furstenhaupt T, Ye S, Birss V (2012) First time investigation of Pt nanocatalysts deposited inside carbon mesopores of controlled length and diameter. J Mater Chem 22:7164–7171CrossRef Banham D, Feng F, Furstenhaupt T, Ye S, Birss V (2012) First time investigation of Pt nanocatalysts deposited inside carbon mesopores of controlled length and diameter. J Mater Chem 22:7164–7171CrossRef
98.
go back to reference Banham DWH (2012) Design and optimization of nanoporous carbon for electrochemical applications. PhD thesis, The University of Calgary, Calgary Banham DWH (2012) Design and optimization of nanoporous carbon for electrochemical applications. PhD thesis, The University of Calgary, Calgary
99.
go back to reference Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522CrossRef Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522CrossRef
100.
go back to reference Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119CrossRef Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119CrossRef
101.
go back to reference Huang S-Y, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899CrossRef Huang S-Y, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899CrossRef
102.
go back to reference Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172:145–154CrossRef Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172:145–154CrossRef
103.
go back to reference Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J Power Sources 172:133–144CrossRef Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J Power Sources 172:133–144CrossRef
104.
go back to reference Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59CrossRef Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59CrossRef
105.
go back to reference de Bruijn FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22CrossRef de Bruijn FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22CrossRef
106.
go back to reference Shao Y, Wang J, Kou R, Engelhard M, Liu J, Wang Y, Lin Y (2009) The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts. Electrochim Acta 54:3109–3114CrossRef Shao Y, Wang J, Kou R, Engelhard M, Liu J, Wang Y, Lin Y (2009) The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts. Electrochim Acta 54:3109–3114CrossRef
107.
go back to reference Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566CrossRef Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566CrossRef
108.
go back to reference Akalework NG, Pan C-J, Su W-N, Rick J, Tsai M-C, Lee J-F, Lin J-M, Tsai L-D, Hwang B-J (2012) Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. J Mater Chem 22:20977–20985CrossRef Akalework NG, Pan C-J, Su W-N, Rick J, Tsai M-C, Lee J-F, Lin J-M, Tsai L-D, Hwang B-J (2012) Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. J Mater Chem 22:20977–20985CrossRef
109.
go back to reference Park M-S, Lee J, Lee J-W, Kim KJ, Jo Y-N, Woo S-G, Kim Y-J (2013) Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties. Carbon 62:278–287CrossRef Park M-S, Lee J, Lee J-W, Kim KJ, Jo Y-N, Woo S-G, Kim Y-J (2013) Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties. Carbon 62:278–287CrossRef
110.
go back to reference Shao Y, Zhang S, Kou R, Wang X, Wang C, Dai S, Viswanathan V, Liu J, Wang Y, Lin Y (2010) Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. J Power Sources 195:1805–1811CrossRef Shao Y, Zhang S, Kou R, Wang X, Wang C, Dai S, Viswanathan V, Liu J, Wang Y, Lin Y (2010) Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. J Power Sources 195:1805–1811CrossRef
111.
go back to reference Shanahan PV, Xu L, Liang C, Waje M, Dai S, Yan YS (2008) Graphitic mesoporous carbon as a durable fuel cell catalyst support. J Power Sources 185:423–427CrossRef Shanahan PV, Xu L, Liang C, Waje M, Dai S, Yan YS (2008) Graphitic mesoporous carbon as a durable fuel cell catalyst support. J Power Sources 185:423–427CrossRef
112.
go back to reference Lv H, Cheng N, Mu S, Pan M (2011) Heat-treated multi-walled carbon nanotubes as durable supports for PEM fuel cell catalysts. Electrochim Acta 58:736–742CrossRef Lv H, Cheng N, Mu S, Pan M (2011) Heat-treated multi-walled carbon nanotubes as durable supports for PEM fuel cell catalysts. Electrochim Acta 58:736–742CrossRef
113.
go back to reference Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558CrossRef Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558CrossRef
114.
go back to reference Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J (2012) Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 4:228–235CrossRef Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J (2012) Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 4:228–235CrossRef
115.
go back to reference Lei M, Wang ZB, Li JS, Tang HL, Liu WJ, Wang YG (2014) CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Sci Rep 4:7415CrossRef Lei M, Wang ZB, Li JS, Tang HL, Liu WJ, Wang YG (2014) CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Sci Rep 4:7415CrossRef
116.
go back to reference Zhang Z, Wang X, Cui Z, Liu C, Lu T, Xing W (2008) Pd nanoparticles supported on WO3/C hybrid material as catalyst for oxygen reduction reaction. J Power Sources 185:941–945CrossRef Zhang Z, Wang X, Cui Z, Liu C, Lu T, Xing W (2008) Pd nanoparticles supported on WO3/C hybrid material as catalyst for oxygen reduction reaction. J Power Sources 185:941–945CrossRef
117.
go back to reference Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7:1127–1137CrossRef Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7:1127–1137CrossRef
118.
go back to reference Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194:146–160CrossRef Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194:146–160CrossRef
119.
go back to reference Benziger J, Nehlsen J, Blackwell D, Brennan T, Itescu J (2005) Water flow in the gas diffusion layer of PEM fuel cells. J Membr Sci 261:98–106CrossRef Benziger J, Nehlsen J, Blackwell D, Brennan T, Itescu J (2005) Water flow in the gas diffusion layer of PEM fuel cells. J Membr Sci 261:98–106CrossRef
120.
go back to reference Dai W, Wang H, Yuan X-Z, Martin JJ, Yang D, Qiao J, Ma J (2009) A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int J Hydrog Energy 34:9461–9478CrossRef Dai W, Wang H, Yuan X-Z, Martin JJ, Yang D, Qiao J, Ma J (2009) A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int J Hydrog Energy 34:9461–9478CrossRef
121.
go back to reference Ahn M, Cho Y-H, Cho Y-H, Kim J, Jung N, Sung Y-E (2011) Influence of hydrophilicity in micro-porous layer for polymer electrolyte membrane fuel cells. Electrochim Acta 56:2450–2457CrossRef Ahn M, Cho Y-H, Cho Y-H, Kim J, Jung N, Sung Y-E (2011) Influence of hydrophilicity in micro-porous layer for polymer electrolyte membrane fuel cells. Electrochim Acta 56:2450–2457CrossRef
122.
go back to reference Middelman E, Kout W, Vogelaar B, Lenssen J, de Waal E (2003) Bipolar plates for PEM fuel cells. J Power Sources 118:44–46CrossRef Middelman E, Kout W, Vogelaar B, Lenssen J, de Waal E (2003) Bipolar plates for PEM fuel cells. J Power Sources 118:44–46CrossRef
123.
go back to reference Li XG, Sabir M (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrog Energy 30:359–371CrossRef Li XG, Sabir M (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrog Energy 30:359–371CrossRef
124.
go back to reference Konno N, Mizuno S, Nakaji H, Ishikawa Y (2015) Development of compact and high-performance fuel cell stack. SAE Int J Altern Powertrains 4:123–129CrossRef Konno N, Mizuno S, Nakaji H, Ishikawa Y (2015) Development of compact and high-performance fuel cell stack. SAE Int J Altern Powertrains 4:123–129CrossRef
125.
go back to reference Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef
126.
go back to reference Viswanathan B, Scibioh MA (2007) Fuel cells: principles and applications. Universities Press (India) Private Limited, Hyderabad, p 494 Viswanathan B, Scibioh MA (2007) Fuel cells: principles and applications. Universities Press (India) Private Limited, Hyderabad, p 494
127.
go back to reference Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim Acta 101:41–58CrossRef Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim Acta 101:41–58CrossRef
128.
go back to reference Olah GA, Goeppert A, Prakash GKS (2009) The “Methanol Economy”: general aspects. In: Olah GA, Goeppert A, Surya Prakash GK (eds) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 179–184CrossRef Olah GA, Goeppert A, Prakash GKS (2009) The “Methanol Economy”: general aspects. In: Olah GA, Goeppert A, Surya Prakash GK (eds) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 179–184CrossRef
129.
go back to reference Olah GA (2005) Beyond Oil and Gas: The Methanol Economy. Angew Chem Int Ed 44:2636–2639CrossRef Olah GA (2005) Beyond Oil and Gas: The Methanol Economy. Angew Chem Int Ed 44:2636–2639CrossRef
130.
go back to reference Gutmann V, Resch G (1995) Water and alcohols. In: Gutmann V, Resch G (eds) Lecture notes on solution chemistry. World Scientific, Singapore, pp 117–128CrossRef Gutmann V, Resch G (1995) Water and alcohols. In: Gutmann V, Resch G (eds) Lecture notes on solution chemistry. World Scientific, Singapore, pp 117–128CrossRef
131.
go back to reference Olah GA, Goeppert A, Prakash GKS (2009) Production of methanol: from fossil fuels and bio-sources to chemical carbon dioxide recycling. In: Olah GA, Goeppert A, Surya Prakash GK (eds) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 233–278CrossRef Olah GA, Goeppert A, Prakash GKS (2009) Production of methanol: from fossil fuels and bio-sources to chemical carbon dioxide recycling. In: Olah GA, Goeppert A, Surya Prakash GK (eds) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 233–278CrossRef
132.
go back to reference Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186CrossRef Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186CrossRef
133.
go back to reference Foster NR (1985) Direct catalytic-oxidation of methane to methanol—a review. Appl Catal 19:1–11CrossRef Foster NR (1985) Direct catalytic-oxidation of methane to methanol—a review. Appl Catal 19:1–11CrossRef
134.
go back to reference Gesser HD, Hunter NR, Prakash CB (1985) The direct conversion of methane to methanol by controlled oxidation. Chem Rev 85:235–244CrossRef Gesser HD, Hunter NR, Prakash CB (1985) The direct conversion of methane to methanol by controlled oxidation. Chem Rev 85:235–244CrossRef
135.
go back to reference Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sust Energ Rev 13:1301–1313CrossRef Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sust Energ Rev 13:1301–1313CrossRef
136.
go back to reference Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl Energy 145:80–103CrossRef Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl Energy 145:80–103CrossRef
137.
go back to reference Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef
138.
go back to reference Olah GA, Goeppert A, Prakash GKS (2009) Methanol and dimethyl ether as fuels and energy carriers. In: Olah GA, Goeppert A, Surya Prakash GK (eds) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 185–231CrossRef Olah GA, Goeppert A, Prakash GKS (2009) Methanol and dimethyl ether as fuels and energy carriers. In: Olah GA, Goeppert A, Surya Prakash GK (eds) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 185–231CrossRef
139.
go back to reference Avgouropoulos G, Ioannides T, Kallitsis JK, Neophytides S (2011) Development of an internal reforming alcohol fuel cell: concept, challenges and opportunities. Chem Eng J 176–177:95–101CrossRef Avgouropoulos G, Ioannides T, Kallitsis JK, Neophytides S (2011) Development of an internal reforming alcohol fuel cell: concept, challenges and opportunities. Chem Eng J 176–177:95–101CrossRef
140.
go back to reference Apanel G, Johnson E (2004) Direct methanol fuel cells—ready to go commercial? Fuel Cells Bull 2004:12–17CrossRef Apanel G, Johnson E (2004) Direct methanol fuel cells—ready to go commercial? Fuel Cells Bull 2004:12–17CrossRef
141.
go back to reference Liu H, Zhang J (2009) Electrocatalysis of direct methanol fuel cells: from fundamentals to application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 582 Liu H, Zhang J (2009) Electrocatalysis of direct methanol fuel cells: from fundamentals to application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 582
142.
go back to reference Tominaka S, Ohta S, Obata H, Momma T, Osaka T (2008) On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J Am Chem Soc 130:10456–10457CrossRef Tominaka S, Ohta S, Obata H, Momma T, Osaka T (2008) On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J Am Chem Soc 130:10456–10457CrossRef
143.
go back to reference Lamy C, Leger J-M, Srinivasan S (2001) Direct methanol fuel cells: from a 20th century electrochemist’s dream to a 21st century emerging technology. In: Bockris JO, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 34. Kluwer Academic Publishers, New York, p 53CrossRef Lamy C, Leger J-M, Srinivasan S (2001) Direct methanol fuel cells: from a 20th century electrochemist’s dream to a 21st century emerging technology. In: Bockris JO, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 34. Kluwer Academic Publishers, New York, p 53CrossRef
144.
go back to reference Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J Power Sources 154:351–359CrossRef Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J Power Sources 154:351–359CrossRef
145.
go back to reference Sarma LS, Taufany F, Hwang B-J (2009) Electrocatalyst Characterization and Activity validation—fundamentals and methods. In: Liu H, Zhang J (eds) Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 115–163CrossRef Sarma LS, Taufany F, Hwang B-J (2009) Electrocatalyst Characterization and Activity validation—fundamentals and methods. In: Liu H, Zhang J (eds) Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 115–163CrossRef
146.
go back to reference Ling J, Longtin G, Savadogo O (2009) Comparison of ethanol and methanol crossover through different MEA components and structures by cyclic voltammetry. Asia Pac J Chem Eng 4:25–32CrossRef Ling J, Longtin G, Savadogo O (2009) Comparison of ethanol and methanol crossover through different MEA components and structures by cyclic voltammetry. Asia Pac J Chem Eng 4:25–32CrossRef
147.
go back to reference Ahmed M, Dincer I (2011) A review on methanol crossover in direct methanol fuel cells: challenges and achievements. Int J Energy Res 35:1213–1228CrossRef Ahmed M, Dincer I (2011) A review on methanol crossover in direct methanol fuel cells: challenges and achievements. Int J Energy Res 35:1213–1228CrossRef
148.
go back to reference Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrog Energy 34:6902–6916CrossRef Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrog Energy 34:6902–6916CrossRef
149.
go back to reference Pereira JP, Falcão DS, Oliveira VB, Pinto AMFR (2014) Performance of a passive direct ethanol fuel cell. J Power Sources 256:14–19CrossRef Pereira JP, Falcão DS, Oliveira VB, Pinto AMFR (2014) Performance of a passive direct ethanol fuel cell. J Power Sources 256:14–19CrossRef
150.
go back to reference Ge J, Liu H (2005) Experimental studies of a direct methanol fuel cell. J Power Sources 142:56–69CrossRef Ge J, Liu H (2005) Experimental studies of a direct methanol fuel cell. J Power Sources 142:56–69CrossRef
151.
go back to reference Narayanan SR, Kindler A, Jeffries-Nakamura B, Chun W, Frank H, Smart M, Valdez TI, Surampudi S, Halpert G, Kosek J, Cropley C (1996) Recent advances in PEM liquid-feed direct methanol fuel cells. In: Battery Conference on Applications and Advances, 1996, Eleventh Annual, 9–12 Jan 1996, pp 113–122 Narayanan SR, Kindler A, Jeffries-Nakamura B, Chun W, Frank H, Smart M, Valdez TI, Surampudi S, Halpert G, Kosek J, Cropley C (1996) Recent advances in PEM liquid-feed direct methanol fuel cells. In: Battery Conference on Applications and Advances, 1996, Eleventh Annual, 9–12 Jan 1996, pp 113–122
152.
go back to reference Oedegaard A, Hentschel C (2006) Characterisation of a portable DMFC stack and a methanol-feeding concept. J Power Sources 158:177–187CrossRef Oedegaard A, Hentschel C (2006) Characterisation of a portable DMFC stack and a methanol-feeding concept. J Power Sources 158:177–187CrossRef
153.
go back to reference Herrero E, Chrzanowski W, Wieckowski A (1995) Dual path mechanism in methanol electrooxidation on a platinum-electrode. J Phys Chem 99:10423–10424CrossRef Herrero E, Chrzanowski W, Wieckowski A (1995) Dual path mechanism in methanol electrooxidation on a platinum-electrode. J Phys Chem 99:10423–10424CrossRef
154.
go back to reference Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2003) New insight into the pathways of methanol oxidation. Electrochem Commun 5:843–846CrossRef Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2003) New insight into the pathways of methanol oxidation. Electrochem Commun 5:843–846CrossRef
155.
go back to reference Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282CrossRef Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282CrossRef
156.
go back to reference Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M (2005) Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 109:11622–11633CrossRef Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M (2005) Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 109:11622–11633CrossRef
157.
go back to reference Cohen JL, Volpe DJ, Abruna HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77CrossRef Cohen JL, Volpe DJ, Abruna HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77CrossRef
158.
go back to reference Neurock M, Janik M, Wieckowski A (2009) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378CrossRef Neurock M, Janik M, Wieckowski A (2009) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378CrossRef
159.
go back to reference Beden B, Lamy C, Bewick A, Kunimatsu K (1981) Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed co species. J Electroanal Chem Interfacial Electrochem 121:343–347CrossRef Beden B, Lamy C, Bewick A, Kunimatsu K (1981) Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed co species. J Electroanal Chem Interfacial Electrochem 121:343–347CrossRef
160.
go back to reference Iwasita T, Nart FC, Vielstich W (1990) An FTIR study of the catalytic activity of a 85:15 platinum-ruthenium alloy for methanol oxidation. Ber Bunsen Ges 94:1030–1034CrossRef Iwasita T, Nart FC, Vielstich W (1990) An FTIR study of the catalytic activity of a 85:15 platinum-ruthenium alloy for methanol oxidation. Ber Bunsen Ges 94:1030–1034CrossRef
161.
go back to reference McBreen J, Mukerjee S (1995) In situ x-ray absorption studies of a Pt-Ru electrocatalyst. J Electrochem Soc 142:3399–3404CrossRef McBreen J, Mukerjee S (1995) In situ x-ray absorption studies of a Pt-Ru electrocatalyst. J Electrochem Soc 142:3399–3404CrossRef
162.
go back to reference Mukerjee S, McBreen J (1997) Electrocatalysis of methanol and CO oxidation: an in situ XAS study. Proc—Electrochem Soc 97–13:36–51 Mukerjee S, McBreen J (1997) Electrocatalysis of methanol and CO oxidation: an in situ XAS study. Proc—Electrochem Soc 97–13:36–51
163.
go back to reference Mukerjee S, McBreen J (1997) Effect of Ru and Sn additions to Pt on the electrocatalysis of methanol oxidation: an in-situ XAS investigation. In: New Materials for Fuel Cell and Modern Battery Systems II, Proceedings of the International Symposium on New Materials for Fuel Cell and Modern Battery Systems, 2nd, Montreal, July 6–10, 1997, pp 548–559 Mukerjee S, McBreen J (1997) Effect of Ru and Sn additions to Pt on the electrocatalysis of methanol oxidation: an in-situ XAS investigation. In: New Materials for Fuel Cell and Modern Battery Systems II, Proceedings of the International Symposium on New Materials for Fuel Cell and Modern Battery Systems, 2nd, Montreal, July 6–10, 1997, pp 548–559
164.
go back to reference Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379:307–314CrossRef Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379:307–314CrossRef
165.
go back to reference Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360CrossRef Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360CrossRef
166.
go back to reference Buatier de Mongeot F, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces—a combined STM and TPD/TPR study. Surf Sci 411:249–262CrossRef Buatier de Mongeot F, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces—a combined STM and TPD/TPR study. Surf Sci 411:249–262CrossRef
167.
go back to reference Watanabe M, Zhu YM, Igarashi H, Uchida H (2000) Mechanism of CO tolerance at Pt-alloy anode catalysts for polymer electrolyte fuel cells. Electrochemistry 68:244–251 Watanabe M, Zhu YM, Igarashi H, Uchida H (2000) Mechanism of CO tolerance at Pt-alloy anode catalysts for polymer electrolyte fuel cells. Electrochemistry 68:244–251
168.
go back to reference Camara GA, Giz MJ, Paganin VA, Ticianelli EA (2002) Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells. J Electroanal Chem 537:21–29CrossRef Camara GA, Giz MJ, Paganin VA, Ticianelli EA (2002) Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells. J Electroanal Chem 537:21–29CrossRef
169.
go back to reference Liu P, Logadottir A, Nørskov JK (2003) Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim Acta 48:3731–3742CrossRef Liu P, Logadottir A, Nørskov JK (2003) Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim Acta 48:3731–3742CrossRef
170.
go back to reference Watanabe M, Uchida M, Motoo S (1987) Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem 229:395–406CrossRef Watanabe M, Uchida M, Motoo S (1987) Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem 229:395–406CrossRef
171.
go back to reference Ye S (2008) CO-tolerant catalysts. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London, pp 759–834CrossRef Ye S (2008) CO-tolerant catalysts. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London, pp 759–834CrossRef
172.
go back to reference Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97:12020–12029CrossRef Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97:12020–12029CrossRef
173.
go back to reference Yuan D, Gong X, Wu R (2008) Decomposition pathways of methanol on the PtAu(111) bimetallic surface: A first-principles study. J Chem Phys 128:5 Yuan D, Gong X, Wu R (2008) Decomposition pathways of methanol on the PtAu(111) bimetallic surface: A first-principles study. J Chem Phys 128:5
174.
go back to reference Zhang XT, Wang H, Key JL, Linkov V, Ji S, Wang XL, Lei ZQ, Wang RF (2012) Strain effect of Core-Shell Co@Pt/C nanoparticle catalyst with enhanced electrocatalytic activity for methanol oxidation. J Electrochem Soc 159:B270–B276CrossRef Zhang XT, Wang H, Key JL, Linkov V, Ji S, Wang XL, Lei ZQ, Wang RF (2012) Strain effect of Core-Shell Co@Pt/C nanoparticle catalyst with enhanced electrocatalytic activity for methanol oxidation. J Electrochem Soc 159:B270–B276CrossRef
175.
go back to reference Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460CrossRef Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460CrossRef
176.
go back to reference Schlapka A, Lischka M, Gross A, Kasberger U, Jakob P (2003) Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys Rev Lett 91:016101CrossRef Schlapka A, Lischka M, Gross A, Kasberger U, Jakob P (2003) Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys Rev Lett 91:016101CrossRef
177.
go back to reference Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRef Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRef
178.
go back to reference Wang H, Abruña HD (2011) Electrocatalysis of direct alcohol fuel cells: quantitative DEMS studies. In: Bocarsly A, Mingos PDM (eds) Fuel cells and hydrogen storage. Springer, Berlin, pp 33–83CrossRef Wang H, Abruña HD (2011) Electrocatalysis of direct alcohol fuel cells: quantitative DEMS studies. In: Bocarsly A, Mingos PDM (eds) Fuel cells and hydrogen storage. Springer, Berlin, pp 33–83CrossRef
179.
go back to reference Lamy C, Coutanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–46 Lamy C, Coutanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–46
180.
go back to reference Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRef Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRef
181.
go back to reference Tilak BV, Conway BE, Angerstein-Kozlowska H (1973) The real condition of oxidized pt electrodes: part III. Kinetic theory of formation and reduction of surface oxides. J Electroanal Chem 48:1–23CrossRef Tilak BV, Conway BE, Angerstein-Kozlowska H (1973) The real condition of oxidized pt electrodes: part III. Kinetic theory of formation and reduction of surface oxides. J Electroanal Chem 48:1–23CrossRef
182.
go back to reference Li N-H, Sun S-G, Chen S-P (1997) Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols. J Electroanal Chem 430:57–67CrossRef Li N-H, Sun S-G, Chen S-P (1997) Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols. J Electroanal Chem 430:57–67CrossRef
183.
go back to reference Rousseau S, Coutanceau C, Lamy C, Leger JM (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24CrossRef Rousseau S, Coutanceau C, Lamy C, Leger JM (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24CrossRef
184.
go back to reference Alcala R, Shabaker JW, Huber GW, Sanchez-Castillo MA, Dumesic JA (2005) Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. J Phys Chem B 109:2074–2085CrossRef Alcala R, Shabaker JW, Huber GW, Sanchez-Castillo MA, Dumesic JA (2005) Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. J Phys Chem B 109:2074–2085CrossRef
185.
go back to reference Chu D, Gilman S (1996) Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. J Electrochem Soc 143:1685–1690CrossRef Chu D, Gilman S (1996) Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. J Electrochem Soc 143:1685–1690CrossRef
186.
go back to reference Park K-W, Choi J-H, Ahn K-S, Sung Y-E (2004) PtRu Alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method. J Phys Chem B 108:5989–5994CrossRef Park K-W, Choi J-H, Ahn K-S, Sung Y-E (2004) PtRu Alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method. J Phys Chem B 108:5989–5994CrossRef
187.
go back to reference Gasteiger HA, Markovic N, Ross JPN, Cairns EJ (1994) Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys. J Electrochem Soc 141:1795–1803CrossRef Gasteiger HA, Markovic N, Ross JPN, Cairns EJ (1994) Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys. J Electrochem Soc 141:1795–1803CrossRef
188.
go back to reference Jusys Z, Kaiser J, Behm RJ (2002) Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation—: a DEMS study. Electrochim Acta 47:3693–3706CrossRef Jusys Z, Kaiser J, Behm RJ (2002) Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation—: a DEMS study. Electrochim Acta 47:3693–3706CrossRef
189.
go back to reference Lu C, Rice C, Masel RI, Babu PK, Waszczuk P, Kim HS, Oldfield E, Wieckowski A (2002) UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts. J Phys Chem B 106:9581–9589CrossRef Lu C, Rice C, Masel RI, Babu PK, Waszczuk P, Kim HS, Oldfield E, Wieckowski A (2002) UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts. J Phys Chem B 106:9581–9589CrossRef
190.
go back to reference Yang H, Yang Y, Zou S (2007) In situ surface-enhanced raman spectroscopic studies of co adsorption and methanol oxidation on Ru-modified Pt surfaces. J Phys Chem C 111:19058–19065CrossRef Yang H, Yang Y, Zou S (2007) In situ surface-enhanced raman spectroscopic studies of co adsorption and methanol oxidation on Ru-modified Pt surfaces. J Phys Chem C 111:19058–19065CrossRef
191.
go back to reference Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRef Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRef
192.
go back to reference Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059CrossRef Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059CrossRef
193.
go back to reference Zelenay P (2006) Performance durability of direct methanol fuel cells. ECS Trans 1:483–495CrossRef Zelenay P (2006) Performance durability of direct methanol fuel cells. ECS Trans 1:483–495CrossRef
194.
go back to reference Sarma LS, Chen C-H, Wang G-R, Hsueh K-L, Huang C-P, Sheu H-S, Liu D-G, Lee J-F, Hwang B-J (2007) Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J Power Sources 167:358–365CrossRef Sarma LS, Chen C-H, Wang G-R, Hsueh K-L, Huang C-P, Sheu H-S, Liu D-G, Lee J-F, Hwang B-J (2007) Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J Power Sources 167:358–365CrossRef
195.
go back to reference Chung Y, Pak C, Park G-S, Jeon WS, Kim J-R, Lee Y, Chang H, Seung D (2008) Understanding a degradation mechanism of direct methanol fuel cell using TOF-SIMS and XPS. J Phys Chem C 112:313–318CrossRef Chung Y, Pak C, Park G-S, Jeon WS, Kim J-R, Lee Y, Chang H, Seung D (2008) Understanding a degradation mechanism of direct methanol fuel cell using TOF-SIMS and XPS. J Phys Chem C 112:313–318CrossRef
196.
go back to reference Gancs L, Hakim N, Hult B, Mukerjee S (2006) Dissolution of Ru from PtRu electrocatalysts and its consequences in DMFCs. ECS Trans 3:607–618CrossRef Gancs L, Hakim N, Hult B, Mukerjee S (2006) Dissolution of Ru from PtRu electrocatalysts and its consequences in DMFCs. ECS Trans 3:607–618CrossRef
197.
go back to reference Antolini E (2011) The problem of Ru dissolution from Pt-Ru catalysts during fuel cell operation: analysis and solutions. J Solid State Electrochem 15:455–472CrossRef Antolini E (2011) The problem of Ru dissolution from Pt-Ru catalysts during fuel cell operation: analysis and solutions. J Solid State Electrochem 15:455–472CrossRef
198.
go back to reference Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, pp 343–349 Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, pp 343–349
199.
go back to reference Gonzalez MJ, Hable CT, Wrighton MS (1998) Electrocatalytic oxidation of small carbohydrate fuels at Pt-Sn modified electrodes. J Phys Chem B 102:9881–9890CrossRef Gonzalez MJ, Hable CT, Wrighton MS (1998) Electrocatalytic oxidation of small carbohydrate fuels at Pt-Sn modified electrodes. J Phys Chem B 102:9881–9890CrossRef
200.
go back to reference Honma I, Toda T (2003) Temperature dependence of kinetics of methanol electro-oxidation on PtSn alloys. J Electrochem Soc 150:A1689–A1692CrossRef Honma I, Toda T (2003) Temperature dependence of kinetics of methanol electro-oxidation on PtSn alloys. J Electrochem Soc 150:A1689–A1692CrossRef
201.
go back to reference Schmidt TJ, Gasteiger HA, Behm RJ (1999) Electro-oxidation of H-2 and CO/H-2-mixtures on a carbon-supported Pt3Sn catalyst. J New Mater Electrochem Syst 2:27–32 Schmidt TJ, Gasteiger HA, Behm RJ (1999) Electro-oxidation of H-2 and CO/H-2-mixtures on a carbon-supported Pt3Sn catalyst. J New Mater Electrochem Syst 2:27–32
202.
go back to reference Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: a short review. Appl Catal B Environ 63:137–149CrossRef Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: a short review. Appl Catal B Environ 63:137–149CrossRef
203.
go back to reference Wang Z-C, Ma Z-M, Li H-L (2008) Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation. Appl Surf Sci 254:6521–6526CrossRef Wang Z-C, Ma Z-M, Li H-L (2008) Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation. Appl Surf Sci 254:6521–6526CrossRef
204.
go back to reference Park K-W, Choi J-H, Kwon B-K, Lee S-A, Sung Y-E, Ha H-Y, Hong S-A, Kim H, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877CrossRef Park K-W, Choi J-H, Kwon B-K, Lee S-A, Sung Y-E, Ha H-Y, Hong S-A, Kim H, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877CrossRef
205.
go back to reference Tsaprailis H, Birss VI (2004) Sol-gel derived Pt-Ir mixed catalysts for DMFC applications. Electrochem Solid-State Lett 7:A348–A352CrossRef Tsaprailis H, Birss VI (2004) Sol-gel derived Pt-Ir mixed catalysts for DMFC applications. Electrochem Solid-State Lett 7:A348–A352CrossRef
206.
go back to reference Lee K-S, Yoo SJ, Ahn D, Jeon T-Y, Choi KH, Park I-S, Sung Y-E (2011) Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles. Langmuir 27:3128–3137CrossRef Lee K-S, Yoo SJ, Ahn D, Jeon T-Y, Choi KH, Park I-S, Sung Y-E (2011) Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles. Langmuir 27:3128–3137CrossRef
207.
go back to reference Holt-Hindle P, Yi Q, Wu G, Koczkur K, Chen A (2008) Electrocatalytic activity of nanoporous Pt-Ir materials toward methanol oxidation and oxygen reduction. J Electrochem Soc 155:K5–K9CrossRef Holt-Hindle P, Yi Q, Wu G, Koczkur K, Chen A (2008) Electrocatalytic activity of nanoporous Pt-Ir materials toward methanol oxidation and oxygen reduction. J Electrochem Soc 155:K5–K9CrossRef
208.
go back to reference Aramata A, Kodera T, Masuda M (1988) Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte, Nafion. J Appl Electrochem 18:577–582CrossRef Aramata A, Kodera T, Masuda M (1988) Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte, Nafion. J Appl Electrochem 18:577–582CrossRef
209.
go back to reference Ioroi T, Yasuda K (2005) Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. J Electrochem Soc 152:A1917–A1924CrossRef Ioroi T, Yasuda K (2005) Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. J Electrochem Soc 152:A1917–A1924CrossRef
210.
go back to reference Wang Y, Toshima N (1997) Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B 101:5301–5306CrossRef Wang Y, Toshima N (1997) Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B 101:5301–5306CrossRef
211.
go back to reference Zhou SH, Varughese B, Eichhorn B, Jackson G, McIlwrath K (2005) Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx, reduction: anomalous stability and reactivity of a core-shell nanostructure. Angew Chem Int Ed 44:4539–4543CrossRef Zhou SH, Varughese B, Eichhorn B, Jackson G, McIlwrath K (2005) Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx, reduction: anomalous stability and reactivity of a core-shell nanostructure. Angew Chem Int Ed 44:4539–4543CrossRef
212.
go back to reference Alayoglu S, Eichhorn B (2008) Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. J Am Chem Soc 130:17479–17486CrossRef Alayoglu S, Eichhorn B (2008) Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. J Am Chem Soc 130:17479–17486CrossRef
213.
go back to reference El Sawy EN, El-Sayed HA, Birss VI (2014) Novel electrochemical fingerprinting methods for the precise determination of Pt shell coverage on Rucore nanoparticles. Chem Commun 50:11558–11561CrossRef El Sawy EN, El-Sayed HA, Birss VI (2014) Novel electrochemical fingerprinting methods for the precise determination of Pt shell coverage on Rucore nanoparticles. Chem Commun 50:11558–11561CrossRef
214.
go back to reference El Sawy EN, El-Sayed HA, Birss VI (2015) Clarifying the role of Ru in methanol oxidation at Rucore@Ptshell nanoparticles. Phys Chem Chem Phys 17:27509–27519CrossRef El Sawy EN, El-Sayed HA, Birss VI (2015) Clarifying the role of Ru in methanol oxidation at Rucore@Ptshell nanoparticles. Phys Chem Chem Phys 17:27509–27519CrossRef
215.
go back to reference Luo J, Wang L, Mott D, Njoki PN, Lin Y, He T, Xu Z, Wanjana BN, Lim IIS, Zhong CJ (2008) Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv Mater 20:4342–4347CrossRef Luo J, Wang L, Mott D, Njoki PN, Lin Y, He T, Xu Z, Wanjana BN, Lim IIS, Zhong CJ (2008) Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv Mater 20:4342–4347CrossRef
216.
go back to reference Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P (2009) Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles. ACS Nano 3:3127–3137CrossRef Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P (2009) Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles. ACS Nano 3:3127–3137CrossRef
217.
go back to reference Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. J Am Chem Soc 132:7418–7428CrossRef Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. J Am Chem Soc 132:7418–7428CrossRef
218.
go back to reference Yang L, Chen J, Zhong X, Cui K, Xu Y, Kuang Y (2007) Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation. Colloids Surf A Physicochem Eng Asp 295:21–26CrossRef Yang L, Chen J, Zhong X, Cui K, Xu Y, Kuang Y (2007) Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation. Colloids Surf A Physicochem Eng Asp 295:21–26CrossRef
219.
go back to reference Fu XZ, Liang Y, Chen SP, Lin JD, Liao DW (2009) Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media. Catal Commun 10:1893–1897CrossRef Fu XZ, Liang Y, Chen SP, Lin JD, Liao DW (2009) Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media. Catal Commun 10:1893–1897CrossRef
220.
go back to reference Lu L, Shen L, Shi Y, Chen T, Jiang G, Ge C, Tang Y, Chen Y, Lu T (2012) New insights into enhanced electrocatalytic performance of carbon supported Pdâ€Cu catalyst for formic acid oxidation. Electrochim Acta 85:187–194CrossRef Lu L, Shen L, Shi Y, Chen T, Jiang G, Ge C, Tang Y, Chen Y, Lu T (2012) New insights into enhanced electrocatalytic performance of carbon supported Pdâ€Cu catalyst for formic acid oxidation. Electrochim Acta 85:187–194CrossRef
221.
go back to reference Wang R, Wang H, Wei B, Wang W, Lei Z (2010) Carbon supported Pt-shell modified PdCo-core with electrocatalyst for methanol oxidation. Int J Hydrog Energy 35:10081–10086CrossRef Wang R, Wang H, Wei B, Wang W, Lei Z (2010) Carbon supported Pt-shell modified PdCo-core with electrocatalyst for methanol oxidation. Int J Hydrog Energy 35:10081–10086CrossRef
222.
go back to reference Chen T-Y, Lin T-L, Luo T-JM, Choi Y, Lee J-F (2010) Effects of Pt shell thicknesses on the atomic structure of Ru–Pt core–shell nanoparticles for methanol electrooxidation applications. ChemPhysChem 11:2383–2392CrossRef Chen T-Y, Lin T-L, Luo T-JM, Choi Y, Lee J-F (2010) Effects of Pt shell thicknesses on the atomic structure of Ru–Pt core–shell nanoparticles for methanol electrooxidation applications. ChemPhysChem 11:2383–2392CrossRef
223.
go back to reference Bokach D, de la Fuente JLG, Tsypkin M, Ochal P, Endsjø IC, Tunold R, Sunde S, Seland F (2011) High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst. Fuel Cells 11:735–744CrossRef Bokach D, de la Fuente JLG, Tsypkin M, Ochal P, Endsjø IC, Tunold R, Sunde S, Seland F (2011) High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst. Fuel Cells 11:735–744CrossRef
224.
go back to reference Muthuswamy N, de la Fuente JLG, Tran DT, Walmsley J, Tsypkin M, Raaen S, Sunde S, Ronning M, Chen D (2013) Ru@Pt core-shell nanoparticles for methanol fuel cell catalyst: control and effects of shell composition. Int J Hydrog Energy 38:16631–16641CrossRef Muthuswamy N, de la Fuente JLG, Tran DT, Walmsley J, Tsypkin M, Raaen S, Sunde S, Ronning M, Chen D (2013) Ru@Pt core-shell nanoparticles for methanol fuel cell catalyst: control and effects of shell composition. Int J Hydrog Energy 38:16631–16641CrossRef
225.
go back to reference Hwang B-J, Sarma LS, Chen C-H, Bock C, Lai F-J, Chang S-H, Yen S-C, Liu D-G, Sheu H-S, Lee J-F (2008) Controlled synthesis and characterization of Ru core-Pt shell bimetallic nanoparticles. J Phys Chem C 112:19922–19929CrossRef Hwang B-J, Sarma LS, Chen C-H, Bock C, Lai F-J, Chang S-H, Yen S-C, Liu D-G, Sheu H-S, Lee J-F (2008) Controlled synthesis and characterization of Ru core-Pt shell bimetallic nanoparticles. J Phys Chem C 112:19922–19929CrossRef
226.
go back to reference Ochal P, Gomez de la Fuente JL, Tsypkin M, Seland F, Sunde S, Muthuswamy N, Ronning M, Chen D, Garcia S, Alayoglu S, Eichhorn B (2011) CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. J Electroanal Chem 655:140–146CrossRef Ochal P, Gomez de la Fuente JL, Tsypkin M, Seland F, Sunde S, Muthuswamy N, Ronning M, Chen D, Garcia S, Alayoglu S, Eichhorn B (2011) CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. J Electroanal Chem 655:140–146CrossRef
227.
go back to reference Hofstead-Duffy AM, Chen D-J, Sun S-G, Tong YJ (2012) Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. J Mater Chem 22:5205–5208CrossRef Hofstead-Duffy AM, Chen D-J, Sun S-G, Tong YJ (2012) Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. J Mater Chem 22:5205–5208CrossRef
228.
go back to reference Hwang SJ, Yoo SJ, Jeon T-Y, Lee K-S, Lim T-H, Sung Y-E, Kim S-K (2010) Facile synthesis of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction. Chem Commun 46:8401–8403CrossRef Hwang SJ, Yoo SJ, Jeon T-Y, Lee K-S, Lim T-H, Sung Y-E, Kim S-K (2010) Facile synthesis of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction. Chem Commun 46:8401–8403CrossRef
229.
go back to reference El Sawy EN, Handal HT, Thangadurai V, Birss VI (2013) Pt-Ir nanoparticles with controlled composition as promising DMFC anode catalyst. Power Sources (under preparation) El Sawy EN, Handal HT, Thangadurai V, Birss VI (2013) Pt-Ir nanoparticles with controlled composition as promising DMFC anode catalyst. Power Sources (under preparation)
230.
go back to reference El Sawy EN, Molero HM, Birss VI (2013) Electrodeposited Pt-Ir thin films as promising DMFC anode materials. Electrochimica Acta (EAST13-0480) El Sawy EN, Molero HM, Birss VI (2013) Electrodeposited Pt-Ir thin films as promising DMFC anode materials. Electrochimica Acta (EAST13-0480)
231.
go back to reference Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132CrossRef Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132CrossRef
232.
go back to reference Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15:2095–2100CrossRef Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15:2095–2100CrossRef
233.
go back to reference Cai W, Liang L, Zhang Y, Xing W, Liu C (2013) Real contribution of formic acid in direct formic acid fuel cell: investigation of origin and guiding for micro structure design. Int J Hydrog Energy 38:212–218CrossRef Cai W, Liang L, Zhang Y, Xing W, Liu C (2013) Real contribution of formic acid in direct formic acid fuel cell: investigation of origin and guiding for micro structure design. Int J Hydrog Energy 38:212–218CrossRef
234.
go back to reference Rejal SZ, Masdar MS, Kamarudin SK (2014) A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int J Hydrog Energy 39:10267–10274CrossRef Rejal SZ, Masdar MS, Kamarudin SK (2014) A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int J Hydrog Energy 39:10267–10274CrossRef
235.
go back to reference Jeong K-J, Miesse CM, Choi J-H, Lee J, Han J, Yoon SP, Nam SW, Lim T-H, Lee TG (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168:119–125CrossRef Jeong K-J, Miesse CM, Choi J-H, Lee J, Han J, Yoon SP, Nam SW, Lim T-H, Lee TG (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168:119–125CrossRef
236.
go back to reference Gao W, Keith JA, Anton J, Jacob T (2010) Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111). J Am Chem Soc 132:18377–18385CrossRef Gao W, Keith JA, Anton J, Jacob T (2010) Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111). J Am Chem Soc 132:18377–18385CrossRef
237.
go back to reference Xu J, Yuan D, Yang F, Mei D, Zhang Z, Chen Y-X (2013) On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Phys Chem Chem Phys 15:4367–4376CrossRef Xu J, Yuan D, Yang F, Mei D, Zhang Z, Chen Y-X (2013) On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Phys Chem Chem Phys 15:4367–4376CrossRef
238.
go back to reference Jiang K, Zhang H-X, Zou S, Cai W-B (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16:20360–20376CrossRef Jiang K, Zhang H-X, Zou S, Cai W-B (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16:20360–20376CrossRef
239.
go back to reference Okamoto H, Kon W, Mukouyama Y (2005) Five current peaks in voltammograms for oxidations of formic acid, formaldehyde, and methanol on platinum. J Phys Chem B 109:15659–15666CrossRef Okamoto H, Kon W, Mukouyama Y (2005) Five current peaks in voltammograms for oxidations of formic acid, formaldehyde, and methanol on platinum. J Phys Chem B 109:15659–15666CrossRef
240.
go back to reference Wang J-Y, Zhang H-X, Jiang K, Cai W-B (2011) From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. J Am Chem Soc 133:14876–14879CrossRef Wang J-Y, Zhang H-X, Jiang K, Cai W-B (2011) From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. J Am Chem Soc 133:14876–14879CrossRef
241.
go back to reference Obradovic MD, Gojkovic SL (2013) HCOOH oxidation on thin Pd layers on Au: self-poisoning by the subsequent reaction of the reaction product. Electrochim Acta 88:384–389CrossRef Obradovic MD, Gojkovic SL (2013) HCOOH oxidation on thin Pd layers on Au: self-poisoning by the subsequent reaction of the reaction product. Electrochim Acta 88:384–389CrossRef
242.
go back to reference El Sawy EN, Khan MA, Pickup PG (2016) Factors affecting the spontaneous adsorption of Bi(III) onto Pt and PtRu nanoparticles. Appl Surf Sci 364:308–314CrossRef El Sawy EN, Khan MA, Pickup PG (2016) Factors affecting the spontaneous adsorption of Bi(III) onto Pt and PtRu nanoparticles. Appl Surf Sci 364:308–314CrossRef
243.
go back to reference Perales-Rondon JV, Ferre-Vilaplana A, Feliu JM, Herrero E (2014) Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface. J Am Chem Soc 136:13110–13113CrossRef Perales-Rondon JV, Ferre-Vilaplana A, Feliu JM, Herrero E (2014) Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface. J Am Chem Soc 136:13110–13113CrossRef
244.
go back to reference Vidal-Iglesias FJ, López-Cudero A, Solla-Gullón J, Feliu JM (2013) Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony-decorated octahedral platinum nanoparticles. Angew Chem Int Ed 52:964–967CrossRef Vidal-Iglesias FJ, López-Cudero A, Solla-Gullón J, Feliu JM (2013) Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony-decorated octahedral platinum nanoparticles. Angew Chem Int Ed 52:964–967CrossRef
245.
go back to reference Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem Commun 46:1491–1493CrossRef Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem Commun 46:1491–1493CrossRef
246.
go back to reference Fang P-P, Duan S, Lin X-D, Anema JR, Li J-F, Buriez O, Ding Y, Fan F-R, Wu D-Y, Ren B, Wang ZL, Amatore C, Tian Z-Q (2011) Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chem Sci 2:531–539CrossRef Fang P-P, Duan S, Lin X-D, Anema JR, Li J-F, Buriez O, Ding Y, Fan F-R, Wu D-Y, Ren B, Wang ZL, Amatore C, Tian Z-Q (2011) Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chem Sci 2:531–539CrossRef
247.
go back to reference Ferre-Vilaplana A, Perales-Rondon JV, Feliu JM, Herrero E (2015) Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) ELECTRODES. ACS Catal 5:645–654CrossRef Ferre-Vilaplana A, Perales-Rondon JV, Feliu JM, Herrero E (2015) Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) ELECTRODES. ACS Catal 5:645–654CrossRef
248.
go back to reference Vielstich W, Yokokawa H, Gasteiger HA (2009) Handbook of fuel cells: fundamentals technology and applications. Wiley, Chichester Vielstich W, Yokokawa H, Gasteiger HA (2009) Handbook of fuel cells: fundamentals technology and applications. Wiley, Chichester
249.
go back to reference Chick LA, Marina OA, Coyle CA, Thomsen EC (2013) Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene. J Power Sources 236:341–349CrossRef Chick LA, Marina OA, Coyle CA, Thomsen EC (2013) Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene. J Power Sources 236:341–349CrossRef
250.
go back to reference Borglum B, Ghezel-Ayagh H (2013) Development of solid oxide fuel cells at versa power systems and FuelCell energy. ECS Trans 57:61–66CrossRef Borglum B, Ghezel-Ayagh H (2013) Development of solid oxide fuel cells at versa power systems and FuelCell energy. ECS Trans 57:61–66CrossRef
251.
go back to reference Blum L, Batfalsky P, de Haart L, Malzbender J, Menzler NH, Peters R, Quadakkers WJ, Remmel J, Tietz F, Stolten D (2013) Overview on the Jülich SOFC development status. ECS Trans 57:23–33CrossRef Blum L, Batfalsky P, de Haart L, Malzbender J, Menzler NH, Peters R, Quadakkers WJ, Remmel J, Tietz F, Stolten D (2013) Overview on the Jülich SOFC development status. ECS Trans 57:23–33CrossRef
252.
go back to reference Wang SR, Zhan ZL, Wen TL (2013) Introduction of solid oxide fuel cell research in SICCAS. ECS Trans 57:35–41CrossRef Wang SR, Zhan ZL, Wen TL (2013) Introduction of solid oxide fuel cell research in SICCAS. ECS Trans 57:35–41CrossRef
253.
go back to reference Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford
254.
go back to reference Hanifi AR, Torabi A, Etsell TH, Yamarte L, Sarkar P (2011) Porous electrolyte-supported tubular micro-SOFC design. Solid State Ionics 192:368–371CrossRef Hanifi AR, Torabi A, Etsell TH, Yamarte L, Sarkar P (2011) Porous electrolyte-supported tubular micro-SOFC design. Solid State Ionics 192:368–371CrossRef
255.
go back to reference Du YH, Sammes NM, Tompsett GA (2000) Optimisation parameters for the extrusion of thin YSZ tubes for SOFC electrolytes. J Eur Ceram Soc 20:959–965CrossRef Du YH, Sammes NM, Tompsett GA (2000) Optimisation parameters for the extrusion of thin YSZ tubes for SOFC electrolytes. J Eur Ceram Soc 20:959–965CrossRef
256.
go back to reference Hui S, Yang D, Wang Z, Yick S, Deces-Petit C, Qu W, Tuck A, Maric R, Ghosh D (2007) Metal-supported solid oxide fuel cell operated at 400–600 °C. J Power Sources 167:336–339CrossRef Hui S, Yang D, Wang Z, Yick S, Deces-Petit C, Qu W, Tuck A, Maric R, Ghosh D (2007) Metal-supported solid oxide fuel cell operated at 400–600 °C. J Power Sources 167:336–339CrossRef
257.
go back to reference Leah R, Bone A, Selcuk A, Corcoran D, Lankin M, Dehaney-Steven Z, Selby M, Whalen P (2011) Development of highly robust, volume-manufacturable metal-supported SOFCs for operation below 600 °C. ECS Trans 35:351–367CrossRef Leah R, Bone A, Selcuk A, Corcoran D, Lankin M, Dehaney-Steven Z, Selby M, Whalen P (2011) Development of highly robust, volume-manufacturable metal-supported SOFCs for operation below 600 °C. ECS Trans 35:351–367CrossRef
258.
go back to reference Tucker MC, Lau GY, Jacobson CP, DeJonghe LC, Visco SJ (2007) Performance of metal-supported SOFCs with infiltrated electrodes. J Power Sources 171:477–482CrossRef Tucker MC, Lau GY, Jacobson CP, DeJonghe LC, Visco SJ (2007) Performance of metal-supported SOFCs with infiltrated electrodes. J Power Sources 171:477–482CrossRef
259.
go back to reference Bone A, Postlethwaite O, Leah R, Mukerjee S, Selby M (2016) Validation methodology and results from a ceres power steel cell technology platform. In: 12th European SOFC & SOE Forum, Lucerne/Switzerland 2016, 9–19 Bone A, Postlethwaite O, Leah R, Mukerjee S, Selby M (2016) Validation methodology and results from a ceres power steel cell technology platform. In: 12th European SOFC & SOE Forum, Lucerne/Switzerland 2016, 9–19
260.
go back to reference Christie GM, Huijsmans JPP (1997) State of the art SOFC component development at ECN. In: Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), vol 97, pp 718–726 Christie GM, Huijsmans JPP (1997) State of the art SOFC component development at ECN. In: Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), vol 97, pp 718–726
261.
go back to reference Rotureau D, Viricelle JP, Pijolat C, Caillol N, Pijolat M (2005) Development of a planar SOFC device using screen-printing technology. J Eur Ceram Soc 25:2633–2636CrossRef Rotureau D, Viricelle JP, Pijolat C, Caillol N, Pijolat M (2005) Development of a planar SOFC device using screen-printing technology. J Eur Ceram Soc 25:2633–2636CrossRef
262.
263.
go back to reference Smeacetto F, Salvo M, Ajitdoss LC, Perero S, Moskalewicz T, Boldrini S, Doubova L, Ferraris M (2010) Yttria-stabilized zirconia thin film electrolyte produced by RF sputtering for solid oxide fuel cell applications. Mater Lett 64:2450–2453CrossRef Smeacetto F, Salvo M, Ajitdoss LC, Perero S, Moskalewicz T, Boldrini S, Doubova L, Ferraris M (2010) Yttria-stabilized zirconia thin film electrolyte produced by RF sputtering for solid oxide fuel cell applications. Mater Lett 64:2450–2453CrossRef
264.
go back to reference Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stover D, Mader W (2008) Ce0.8Gd0.2O2-δ protecting layers manufactured by physical va or deposition for IT-SOFC. Solid State Ionics 16. In: Proceedings of the 16th International Conference on Solid State Ionics (SSI-16), Part I, 179, pp 919–923 Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stover D, Mader W (2008) Ce0.8Gd0.2O2-δ protecting layers manufactured by physical va or deposition for IT-SOFC. Solid State Ionics 16. In: Proceedings of the 16th International Conference on Solid State Ionics (SSI-16), Part I, 179, pp 919–923
265.
go back to reference Heiroth S, Lippert T, Wokaun A (2008) Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition. Appl Phys A 93:639–643CrossRef Heiroth S, Lippert T, Wokaun A (2008) Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition. Appl Phys A 93:639–643CrossRef
266.
go back to reference Schlupp MVF, Prestat M, Martynczuk J, Rupp JLM, Bieberle-Hutter A, Gauckler LJ (2012) Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. J Power Sources 202:47–55CrossRef Schlupp MVF, Prestat M, Martynczuk J, Rupp JLM, Bieberle-Hutter A, Gauckler LJ (2012) Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. J Power Sources 202:47–55CrossRef
267.
go back to reference Wang Z, Sun K, Shen S, Zhang N, Qiao J, Xu P (2008) Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method. J Membr Sci 320:500–504CrossRef Wang Z, Sun K, Shen S, Zhang N, Qiao J, Xu P (2008) Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method. J Membr Sci 320:500–504CrossRef
268.
go back to reference Courtin E, Boy P, Rouhet C, Bianchi L, Bruneton E, Poirot N, Laberty-Robert C, Sanchez C (2012) Optimized sol-gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chem Mater 24:4540–4548CrossRef Courtin E, Boy P, Rouhet C, Bianchi L, Bruneton E, Poirot N, Laberty-Robert C, Sanchez C (2012) Optimized sol-gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chem Mater 24:4540–4548CrossRef
269.
go back to reference Kesler O (2007) Plasma spray processing of solid oxide fuel cells. In: Materials science forum; Trans Tech Publ, pp 1385–1390 Kesler O (2007) Plasma spray processing of solid oxide fuel cells. In: Materials science forum; Trans Tech Publ, pp 1385–1390
270.
go back to reference Sammes NM, Du Y (2007) Fabrication and characterization of tubular solid oxide fuel cells. Int J Appl Ceram Technol 4:89–102CrossRef Sammes NM, Du Y (2007) Fabrication and characterization of tubular solid oxide fuel cells. Int J Appl Ceram Technol 4:89–102CrossRef
271.
go back to reference Singhal SC (1999) Recent progress in tubular solid oxide fuel cell technology. In: Proceedings of the International Symposium on Solid Oxide Fuel Cells V, 1999; Electrochemical Society, Pennington, 1999, pp 37–50 Singhal SC (1999) Recent progress in tubular solid oxide fuel cell technology. In: Proceedings of the International Symposium on Solid Oxide Fuel Cells V, 1999; Electrochemical Society, Pennington, 1999, pp 37–50
272.
go back to reference Hanifi AR, Shinbine A, Etsell TH, Sarkar P (2012) Development of monolithic YSZ porous and dense layers through multiple slip casting for ceramic fuel cell applications. Int J Appl Ceram Technol 9:1011–1021CrossRef Hanifi AR, Shinbine A, Etsell TH, Sarkar P (2012) Development of monolithic YSZ porous and dense layers through multiple slip casting for ceramic fuel cell applications. Int J Appl Ceram Technol 9:1011–1021CrossRef
273.
go back to reference Panthi D, Choi B, Tsutsumi A (2015) Fabrication and evaluation of a micro-tubular solid oxide fuel cell with an inert support using scandia-stabilized zirconia electrolyte. J Electrochem Soc 162:F1555–F1560CrossRef Panthi D, Choi B, Tsutsumi A (2015) Fabrication and evaluation of a micro-tubular solid oxide fuel cell with an inert support using scandia-stabilized zirconia electrolyte. J Electrochem Soc 162:F1555–F1560CrossRef
274.
go back to reference Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313CrossRef Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313CrossRef
275.
go back to reference Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162:30–40CrossRef Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162:30–40CrossRef
276.
go back to reference Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O (2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ionics 132:235–239CrossRef Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O (2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ionics 132:235–239CrossRef
277.
go back to reference Wiik K, Schmidt CR, Faaland S, Shamsili S, Einarsrud MA, Grande T (1999) Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia: I. Powder samples. J Am Ceram Soc 82:721–728CrossRef Wiik K, Schmidt CR, Faaland S, Shamsili S, Einarsrud MA, Grande T (1999) Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia: I. Powder samples. J Am Ceram Soc 82:721–728CrossRef
278.
go back to reference Marina OA, Bagger C, Primdahl S, Mogensen M (1999) A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123:199–208CrossRef Marina OA, Bagger C, Primdahl S, Mogensen M (1999) A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123:199–208CrossRef
279.
go back to reference Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75CrossRef Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75CrossRef
280.
go back to reference Zhang X, Robertson M, Deces-Petit C, Qu W, Kesler O, Maric R, Ghosh D (2007) Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J Power Sources 164:668–677CrossRef Zhang X, Robertson M, Deces-Petit C, Qu W, Kesler O, Maric R, Ghosh D (2007) Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J Power Sources 164:668–677CrossRef
281.
go back to reference Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) Electrical and ionic conductivity of Gd-doped Ceria. J Electrochem Soc 147:3606–3609CrossRef Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) Electrical and ionic conductivity of Gd-doped Ceria. J Electrochem Soc 147:3606–3609CrossRef
282.
go back to reference Kannan R, Singh K, Gill S, Furstenhaupt T, Thangadurai V (2013) Chemically stable proton conducting doped BaCeO3-no more fear to SOFC wastes. Sci Rep 3:2138–2142CrossRef Kannan R, Singh K, Gill S, Furstenhaupt T, Thangadurai V (2013) Chemically stable proton conducting doped BaCeO3-no more fear to SOFC wastes. Sci Rep 3:2138–2142CrossRef
283.
go back to reference Liu J, Birss V, Hill J (2010) Electrochemical performance and microstructure characterization of nickel yttrium-stabilized zirconia anode. AIChE J 56:1651–1658CrossRef Liu J, Birss V, Hill J (2010) Electrochemical performance and microstructure characterization of nickel yttrium-stabilized zirconia anode. AIChE J 56:1651–1658CrossRef
284.
go back to reference Prakash BS, Kumar SS, Aruna ST (2014) Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sust Energ Rev 36:149–179CrossRef Prakash BS, Kumar SS, Aruna ST (2014) Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sust Energ Rev 36:149–179CrossRef
285.
go back to reference Jiang SP, Chan SH (2004) A review of anode materials development in solid oxide fuel cells. J Mater Sci 39:4405–4439CrossRef Jiang SP, Chan SH (2004) A review of anode materials development in solid oxide fuel cells. J Mater Sci 39:4405–4439CrossRef
286.
go back to reference Sarantaridis D, Atkinson A (2007) Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cells 7:246–258CrossRef Sarantaridis D, Atkinson A (2007) Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cells 7:246–258CrossRef
287.
go back to reference Klemenso T, Mogensen M (2007) Ni/YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization. J Am Ceram Soc 90:3582–3588CrossRef Klemenso T, Mogensen M (2007) Ni/YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization. J Am Ceram Soc 90:3582–3588CrossRef
288.
go back to reference Young JL, Birss VI (2011) Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells. J Power Sources 196:7126–7135CrossRef Young JL, Birss VI (2011) Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells. J Power Sources 196:7126–7135CrossRef
289.
go back to reference Vedasri V, Young JL, Birss VI (2010) A possible solution to the mechanical degradation of Ni-yttria stabilized zirconia anode-supported solid oxide fuel cells due to redox cycling. J Power Sources 195:5534–5542CrossRef Vedasri V, Young JL, Birss VI (2010) A possible solution to the mechanical degradation of Ni-yttria stabilized zirconia anode-supported solid oxide fuel cells due to redox cycling. J Power Sources 195:5534–5542CrossRef
290.
go back to reference Young JL, Molero H, Birss VI (2014) The effect of pre-oxidation treatments on the oxidation tolerance of Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells. J Power Sources 271:538–547CrossRef Young JL, Molero H, Birss VI (2014) The effect of pre-oxidation treatments on the oxidation tolerance of Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells. J Power Sources 271:538–547CrossRef
291.
go back to reference Cheng Z, Liu M (2007) Characterization of sulfur poisoning of Ni/YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ionics 178:925–935CrossRef Cheng Z, Liu M (2007) Characterization of sulfur poisoning of Ni/YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ionics 178:925–935CrossRef
292.
go back to reference Mirfakhraei B, Paulson S, Thangadurai V, Birss V (2013) Enhanced hydrogen oxidation activity and H2S tolerance of Ni-infiltrated ceria solid oxide fuel cell anodes. J Power Sources 243:95–101CrossRef Mirfakhraei B, Paulson S, Thangadurai V, Birss V (2013) Enhanced hydrogen oxidation activity and H2S tolerance of Ni-infiltrated ceria solid oxide fuel cell anodes. J Power Sources 243:95–101CrossRef
293.
go back to reference Deleebeeck L, Shishkin M, Addo P, Paulson S, Molero H, Ziegler T, Birss V (2014) Activation of H2 oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions. Phys Chem Chem Phys 16:9383–9393CrossRef Deleebeeck L, Shishkin M, Addo P, Paulson S, Molero H, Ziegler T, Birss V (2014) Activation of H2 oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions. Phys Chem Chem Phys 16:9383–9393CrossRef
294.
go back to reference Singh A, Paulson S, Hill JM, Birss V (2013) Beneficial effects of low ppm levels of H2S on the performance of Ni-YSZ SOFC anodes in syngas fuels. ECS Trans 57:1277–1287CrossRef Singh A, Paulson S, Hill JM, Birss V (2013) Beneficial effects of low ppm levels of H2S on the performance of Ni-YSZ SOFC anodes in syngas fuels. ECS Trans 57:1277–1287CrossRef
295.
go back to reference Smith TR, Wood A, Birss VI (2009) Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells. Appl Catal A Gen 354:1–7CrossRef Smith TR, Wood A, Birss VI (2009) Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells. Appl Catal A Gen 354:1–7CrossRef
296.
go back to reference Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578CrossRef Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578CrossRef
297.
go back to reference Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289–298CrossRef Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289–298CrossRef
298.
go back to reference Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314–332CrossRef Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314–332CrossRef
299.
go back to reference Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651CrossRef Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651CrossRef
300.
go back to reference Gross MD, Vohs JM, Gorte RJ (2007) Recent progress in SOFC anodes for direct utilization of hydrocarbons. J Mater Chem 17:3071–3077CrossRef Gross MD, Vohs JM, Gorte RJ (2007) Recent progress in SOFC anodes for direct utilization of hydrocarbons. J Mater Chem 17:3071–3077CrossRef
301.
go back to reference Flytzani-Stephanopoulos M, Sakbodin M, Wang Z (2006) Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Science 312:1508–1510CrossRef Flytzani-Stephanopoulos M, Sakbodin M, Wang Z (2006) Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Science 312:1508–1510CrossRef
302.
go back to reference Canales-Vazquez J s, Ruiz-Morales JC, Irvine JTS, Zhou W (2005) Sc-substituted oxygen excess titanates as fuel electrodes for SOFCs. J Electrochem Soc 152:A1458–A1465CrossRef Canales-Vazquez J s, Ruiz-Morales JC, Irvine JTS, Zhou W (2005) Sc-substituted oxygen excess titanates as fuel electrodes for SOFCs. J Electrochem Soc 152:A1458–A1465CrossRef
303.
go back to reference Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714CrossRef Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714CrossRef
304.
go back to reference Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149:21–28CrossRef Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149:21–28CrossRef
305.
go back to reference Hui S, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283CrossRef Hui S, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283CrossRef
306.
go back to reference Maffei N, de Silveira G (2003) Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements. Solid State Ionics 159:209–216CrossRef Maffei N, de Silveira G (2003) Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements. Solid State Ionics 159:209–216CrossRef
307.
go back to reference Tao S, Irvine JTS (2004) Synthesis and Characterization of (La0.75Sr0.25) Cr0.5Mn0.5 O3-δ, a redox-stable, efficient perovskite anode for SOFC. J Electrochem Soc 151:A252–A259CrossRef Tao S, Irvine JTS (2004) Synthesis and Characterization of (La0.75Sr0.25) Cr0.5Mn0.5 O3-δ, a redox-stable, efficient perovskite anode for SOFC. J Electrochem Soc 151:A252–A259CrossRef
308.
go back to reference Yang L, Zuo C, Liu M (2010) High-performance anode-supported Solid Oxide Fuel Cells based on Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY) fabricated by a modified co-pressing process. J Power Sources 195:1845–1848CrossRef Yang L, Zuo C, Liu M (2010) High-performance anode-supported Solid Oxide Fuel Cells based on Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY) fabricated by a modified co-pressing process. J Power Sources 195:1845–1848CrossRef
309.
go back to reference Mirfakhraei B, Ramezanipour F, Paulson S, Birss V, Thangadurai V (2014) Effect of sintering temperature on microstructure, chemical stability, and electrical properties of transition metal or Yb-doped BaZr0.1Ce0.7Y0.1 M0.1O3-δ (M = Fe, Ni, Co, and b). Front Energy Res 2:9CrossRef Mirfakhraei B, Ramezanipour F, Paulson S, Birss V, Thangadurai V (2014) Effect of sintering temperature on microstructure, chemical stability, and electrical properties of transition metal or Yb-doped BaZr0.1Ce0.7Y0.1 M0.1O3-δ (M = Fe, Ni, Co, and b). Front Energy Res 2:9CrossRef
310.
go back to reference Chen M, Paulson S, Thangadurai V, Birss V (2013) Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes. J Power Sources 236:68–79CrossRef Chen M, Paulson S, Thangadurai V, Birss V (2013) Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes. J Power Sources 236:68–79CrossRef
311.
go back to reference Addo PK, Molero-Sanchez B, Buyukaksoy A, Paulson S, Birss V (2015) Sulfur tolerance of La0.3 M0.7Fe0.7Cr0.3O3-δ (M = Sr, Ca) solid oxide fuel cell anodes. ECS Trans 66:219–228CrossRef Addo PK, Molero-Sanchez B, Buyukaksoy A, Paulson S, Birss V (2015) Sulfur tolerance of La0.3 M0.7Fe0.7Cr0.3O3-δ (M = Sr, Ca) solid oxide fuel cell anodes. ECS Trans 66:219–228CrossRef
312.
go back to reference Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254–257CrossRef Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254–257CrossRef
313.
go back to reference Handal HT, Thangadurai V (2014) Electrochemical characterization of multi-element-doped ceria as potential anodes for SOFCs. Solid State Ionics 262:359–364CrossRef Handal HT, Thangadurai V (2014) Electrochemical characterization of multi-element-doped ceria as potential anodes for SOFCs. Solid State Ionics 262:359–364CrossRef
314.
go back to reference Deleebeeck L, Fournier JL, Birss V (2010) Comparison of Sr-doped and Sr-free La 1-x Sr x Mn 0.5 Cr 0.5 O 3 ± δ SOFC anode. Solid State Ionics 181:1229–1237CrossRef Deleebeeck L, Fournier JL, Birss V (2010) Comparison of Sr-doped and Sr-free La 1-x Sr x Mn 0.5 Cr 0.5 O 3 ± δ SOFC anode. Solid State Ionics 181:1229–1237CrossRef
315.
go back to reference Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS (2013) In situ growth of nanoparticles through control of non-stoichiometry. Nat Chem 5:916–923CrossRef Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS (2013) In situ growth of nanoparticles through control of non-stoichiometry. Nat Chem 5:916–923CrossRef
316.
go back to reference Sun Y, Li J, Zeng Y, Amirkhiz BS, Wang M, Behnamian Y, Luo J (2015) A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J Mater Chem A 3:11048–11056CrossRef Sun Y, Li J, Zeng Y, Amirkhiz BS, Wang M, Behnamian Y, Luo J (2015) A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J Mater Chem A 3:11048–11056CrossRef
317.
go back to reference Co AC, Birss VI (2006) Mechanistic analysis of the oxygen reduction reaction at (La, Sr) MnO3 cathodes in solid oxide fuel cells. J Phys Chem B 110:11299–11309CrossRef Co AC, Birss VI (2006) Mechanistic analysis of the oxygen reduction reaction at (La, Sr) MnO3 cathodes in solid oxide fuel cells. J Phys Chem B 110:11299–11309CrossRef
318.
go back to reference Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, DordrechtCrossRef Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, DordrechtCrossRef
319.
go back to reference Sun C, Hui R, Roller J (2009) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRef Sun C, Hui R, Roller J (2009) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRef
320.
go back to reference Liu J, Co A (2006) C.; Paulson, S. and Birss, V. I., Oxygen reduction at sol-gel derived La 0.8 Sr 0.2 Co 0.8 Fe 0.2 O 3 cathodes. Solid State Ionics 177:377–387CrossRef Liu J, Co A (2006) C.; Paulson, S. and Birss, V. I., Oxygen reduction at sol-gel derived La 0.8 Sr 0.2 Co 0.8 Fe 0.2 O 3 cathodes. Solid State Ionics 177:377–387CrossRef
321.
go back to reference Uhlenbruck S, Moskalewicz T, Jordan N, Penkalla HJ, Buchkremer HP (2009) Element interdiffusion at electrolyte-cathode interfaces in ceramic high-temperature fuel cells. Solid State Ionics 180:418–423CrossRef Uhlenbruck S, Moskalewicz T, Jordan N, Penkalla HJ, Buchkremer HP (2009) Element interdiffusion at electrolyte-cathode interfaces in ceramic high-temperature fuel cells. Solid State Ionics 180:418–423CrossRef
322.
go back to reference Mai A, Haanappel VAC, Tietz F, Stover D (2006) Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer. Solid State Ionics 177:2103–2107CrossRef Mai A, Haanappel VAC, Tietz F, Stover D (2006) Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer. Solid State Ionics 177:2103–2107CrossRef
323.
go back to reference Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRef Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRef
324.
go back to reference Meng X, Lv S, Ji Y, Wei T, Zhang Y (2008) Characterization of Pr1-xSrxCo0.8Fe0.2O3-δ (0.2 ≤ x ≤ 0.6) cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 183:581–585CrossRef Meng X, Lv S, Ji Y, Wei T, Zhang Y (2008) Characterization of Pr1-xSrxCo0.8Fe0.2O3-δ (0.2 ≤ x ≤ 0.6) cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 183:581–585CrossRef
325.
go back to reference Molero-Sanchez B, Prado-Gonjal J, Avila-Brande D, Chen M, Moran E, Birss V (2015) High performance La0.3Ca0.7Cr0.3Fe0.7O3-δ air electrode for reversi le solid oxide fuel cell applications. Int J Hydrog Energy 40:1902–1910CrossRef Molero-Sanchez B, Prado-Gonjal J, Avila-Brande D, Chen M, Moran E, Birss V (2015) High performance La0.3Ca0.7Cr0.3Fe0.7O3-δ air electrode for reversi le solid oxide fuel cell applications. Int J Hydrog Energy 40:1902–1910CrossRef
326.
go back to reference Chen M, Paulson S, Kan WH, Thangadurai V, Birss V (2015) Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode. J Mater Chem A 3:22614–22626CrossRef Chen M, Paulson S, Kan WH, Thangadurai V, Birss V (2015) Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode. J Mater Chem A 3:22614–22626CrossRef
327.
go back to reference Molero-Sanchez B, Prado-Gonjal J, Avila-Brande D, Birss V, Moran E (2015) Microwave-assisted synthesis and characterization of new cathodic material for solid oxide fuel cells: La0.3Ca0.7Fe0.7Cr0.3-δ. Ceram Int 41:8411–8416CrossRef Molero-Sanchez B, Prado-Gonjal J, Avila-Brande D, Birss V, Moran E (2015) Microwave-assisted synthesis and characterization of new cathodic material for solid oxide fuel cells: La0.3Ca0.7Fe0.7Cr0.3-δ. Ceram Int 41:8411–8416CrossRef
328.
go back to reference Zhu WZ, Deevi SC (2003) Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A 348:227–243CrossRef Zhu WZ, Deevi SC (2003) Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A 348:227–243CrossRef
329.
go back to reference Fergus JW (2004) Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics 171:1–15CrossRef Fergus JW (2004) Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics 171:1–15CrossRef
330.
go back to reference Thyssenkrupp VDM (2010) Material Data Sheet No. 4046 for Crofer 22 APU. Jun-2006. Accessed 28 Feb 2011 Thyssenkrupp VDM (2010) Material Data Sheet No. 4046 for Crofer 22 APU. Jun-2006. Accessed 28 Feb 2011
331.
go back to reference Jose G-VM, Laurent L, Vladislav K, Harald F, del Mar J-LM (2005) Oxidation of potential SOFC interconnect materials, Crofer 22 APU and Avesta 353 MA, in dry and humid air studied in situ by X-ray diffraction. Mater High Temp 22:245–251CrossRef Jose G-VM, Laurent L, Vladislav K, Harald F, del Mar J-LM (2005) Oxidation of potential SOFC interconnect materials, Crofer 22 APU and Avesta 353 MA, in dry and humid air studied in situ by X-ray diffraction. Mater High Temp 22:245–251CrossRef
332.
go back to reference Gannon PE, Kayani A, Ramana CV, Deibert MC, Smith RJ, Gorokhovsky VI (2008) Simulated SOFC interconnect performance of crofer 22 APU with and without filtered arc CrAlON coatings. Electrochem Solid-State Lett 11:B54–B58CrossRef Gannon PE, Kayani A, Ramana CV, Deibert MC, Smith RJ, Gorokhovsky VI (2008) Simulated SOFC interconnect performance of crofer 22 APU with and without filtered arc CrAlON coatings. Electrochem Solid-State Lett 11:B54–B58CrossRef
333.
go back to reference Wang K, Liu Y, Fergus JW (2011) Interactions between SOFC interconnect coating materials and chromia. J Am Ceram Soc 94:4490–4495CrossRef Wang K, Liu Y, Fergus JW (2011) Interactions between SOFC interconnect coating materials and chromia. J Am Ceram Soc 94:4490–4495CrossRef
334.
go back to reference Yang Z, Xia G-G, Maupin GD, Stevenson JW (2006) Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications. Surf Coat Technol 201:4476–4483CrossRef Yang Z, Xia G-G, Maupin GD, Stevenson JW (2006) Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications. Surf Coat Technol 201:4476–4483CrossRef
335.
go back to reference Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC (2005) Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties. Solid State Ionics 176:425–433CrossRef Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC (2005) Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties. Solid State Ionics 176:425–433CrossRef
336.
go back to reference Yang Z, Xia G, Simner SP, Stevenson JW (2005) Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. J Electrochem Soc 152:A1896–A1901CrossRef Yang Z, Xia G, Simner SP, Stevenson JW (2005) Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. J Electrochem Soc 152:A1896–A1901CrossRef
337.
go back to reference Petric A, Huang P, Tietz F (2000) Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135:719–725CrossRef Petric A, Huang P, Tietz F (2000) Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135:719–725CrossRef
338.
go back to reference Gorelov VP, Bronin DI, Sokolova JV, Näfe H, Aldinger F (2001) The effect of doping and processing conditions on properties of La1-xSrxGa1-yMgyO3-α. J Eur Ceram Soc 21:2311–2317CrossRef Gorelov VP, Bronin DI, Sokolova JV, Näfe H, Aldinger F (2001) The effect of doping and processing conditions on properties of La1-xSrxGa1-yMgyO3-α. J Eur Ceram Soc 21:2311–2317CrossRef
339.
go back to reference Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804–874CrossRef Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804–874CrossRef
340.
go back to reference Bansal NP, Zhong Z (2006) Combustion synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x nanopowders for solid oxide fuel cell cathodes. J Power Sources 158:148–153CrossRef Bansal NP, Zhong Z (2006) Combustion synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x nanopowders for solid oxide fuel cell cathodes. J Power Sources 158:148–153CrossRef
341.
go back to reference Fu Y-P, Wen S-B, Lu C-H (2008) Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J Am Ceram Soc 91:127–131CrossRef Fu Y-P, Wen S-B, Lu C-H (2008) Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J Am Ceram Soc 91:127–131CrossRef
342.
go back to reference Celerier, Laberty C, Ansart F, Lenormand P, Stevens P (2006) New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26. Ceram Int 32:271–276CrossRef Celerier, Laberty C, Ansart F, Lenormand P, Stevens P (2006) New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26. Ceram Int 32:271–276CrossRef
343.
go back to reference Wang JX, Tao YK, Shao J, Wang WG (2009) Synthesis and properties of (La0.75Sr0.25)0.95MnO3 ± δ nano-powder prepared via Pechini route. J Power Sources 186:344–348CrossRef Wang JX, Tao YK, Shao J, Wang WG (2009) Synthesis and properties of (La0.75Sr0.25)0.95MnO3 ± δ nano-powder prepared via Pechini route. J Power Sources 186:344–348CrossRef
344.
go back to reference Dikmen S, Shuk P, Greenblatt M, Gocmez H (2002) Hydrothermal synthesis and properties of Ce 1 − x Gd x O 2 − δ solid solutions. Solid State Sci 4:585–590CrossRef Dikmen S, Shuk P, Greenblatt M, Gocmez H (2002) Hydrothermal synthesis and properties of Ce 1 − x Gd x O 2 − δ solid solutions. Solid State Sci 4:585–590CrossRef
345.
go back to reference Sholklapper TZ, Kurokawa H, Jacobson CP, Visco SJ, De Jonghe LC (2007) Nanostructured solid oxide fuel cell electrodes. Nano Lett 7:2136–2141CrossRef Sholklapper TZ, Kurokawa H, Jacobson CP, Visco SJ, De Jonghe LC (2007) Nanostructured solid oxide fuel cell electrodes. Nano Lett 7:2136–2141CrossRef
346.
go back to reference Keyvanfar P, Birss V (2014) Optimization of infiltration techniques used to construct Ni/YSZ anodes. J Electrochem Soc 161:F660–F667CrossRef Keyvanfar P, Birss V (2014) Optimization of infiltration techniques used to construct Ni/YSZ anodes. J Electrochem Soc 161:F660–F667CrossRef
347.
go back to reference Torrell M, Hernández E, Slodczyk A, Morata A, Tarancon A (2016) Characterization of solid oxide electrolyser cells nanocomposite electrodes based on mesoporous ceramic scaffolds infiltration. In: 12th European SOFC & SOE Forum, Lucerne/Switzerland, pp 44–53 Torrell M, Hernández E, Slodczyk A, Morata A, Tarancon A (2016) Characterization of solid oxide electrolyser cells nanocomposite electrodes based on mesoporous ceramic scaffolds infiltration. In: 12th European SOFC & SOE Forum, Lucerne/Switzerland, pp 44–53
348.
go back to reference Ouyang MBP, Brandon NP (2016) Controlling TPB length through calcination temperature, and its influence on the microstructure and electrochemical performance of Ni infiltrated CGO anodes. In: 12th European SOFC & SOE Forum, Lucerne/Switzerland, pp 191–199 Ouyang MBP, Brandon NP (2016) Controlling TPB length through calcination temperature, and its influence on the microstructure and electrochemical performance of Ni infiltrated CGO anodes. In: 12th European SOFC & SOE Forum, Lucerne/Switzerland, pp 191–199
349.
go back to reference Keyvanfar P, Hanifi AR, Sarkar P, Etsell TH, Birss V (2015) Enhancing the stability of infiltrated Ni/YSZ anodes. ECS Trans 68:1255–1263CrossRef Keyvanfar P, Hanifi AR, Sarkar P, Etsell TH, Birss V (2015) Enhancing the stability of infiltrated Ni/YSZ anodes. ECS Trans 68:1255–1263CrossRef
350.
go back to reference Buyukaksoy A, Petrovsky V, Dogan F (2012) Stability and performance of solid oxide fuel cells with nanocomposite electrodes. J Electrochem Soc 159:B666–B669CrossRef Buyukaksoy A, Petrovsky V, Dogan F (2012) Stability and performance of solid oxide fuel cells with nanocomposite electrodes. J Electrochem Soc 159:B666–B669CrossRef
351.
go back to reference Gorte RJ, Vohs JM (2009) Nanostructured anodes for solid oxide fuel cells. Curr Opin Colloid Interface Sci 14:236–244CrossRef Gorte RJ, Vohs JM (2009) Nanostructured anodes for solid oxide fuel cells. Curr Opin Colloid Interface Sci 14:236–244CrossRef
352.
go back to reference Busawon AN, Sarantaridis D, Atkinson A (2008) Ni infiltration as a possible solution to the redox problem of SOFC anodes. Electrochem Solid-State Lett 11:B186–B189CrossRef Busawon AN, Sarantaridis D, Atkinson A (2008) Ni infiltration as a possible solution to the redox problem of SOFC anodes. Electrochem Solid-State Lett 11:B186–B189CrossRef
353.
go back to reference Kurokawa H, Sholklapper TZ, Jacobson CP, De Jonghe LC, Visco SJ (2007) Ceria nanocoating for sulfur tolerant Ni-based anodes of solid oxide fuel cells. Electrochem Solid-State Lett 10:B135–B138CrossRef Kurokawa H, Sholklapper TZ, Jacobson CP, De Jonghe LC, Visco SJ (2007) Ceria nanocoating for sulfur tolerant Ni-based anodes of solid oxide fuel cells. Electrochem Solid-State Lett 10:B135–B138CrossRef
354.
go back to reference Kim G, Lee S, Shin JY, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2009) Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem Solid-State Lett 12:B48–B52CrossRef Kim G, Lee S, Shin JY, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2009) Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem Solid-State Lett 12:B48–B52CrossRef
355.
go back to reference Lee S, Kim G, Vohs JM, Gorte RJ (2008) SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J Electrochem Soc 155:B1179–B1183CrossRef Lee S, Kim G, Vohs JM, Gorte RJ (2008) SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J Electrochem Soc 155:B1179–B1183CrossRef
356.
go back to reference Huang Y, Vohs JM, Gorte RJ (2006) SOFC cathodes prepared by infiltration with various LSM precursors. Electrochem Solid-State Lett 9:A237–A240CrossRef Huang Y, Vohs JM, Gorte RJ (2006) SOFC cathodes prepared by infiltration with various LSM precursors. Electrochem Solid-State Lett 9:A237–A240CrossRef
357.
go back to reference Shah M, Voorhees PW, Barnett SA (2011) Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics 187:64–67CrossRef Shah M, Voorhees PW, Barnett SA (2011) Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics 187:64–67CrossRef
358.
go back to reference Nicholas JD, Barnett SA (2010) Measurements and modeling of Sm0. 5Sr0. 5CoO3-x-Ce0. 9Gd0. 1O1 95 SOFC cathodes produced using infiltrate solution additives. J Electrochem Soc 157:B536–B541CrossRef Nicholas JD, Barnett SA (2010) Measurements and modeling of Sm0. 5Sr0. 5CoO3-x-Ce0. 9Gd0. 1O1 95 SOFC cathodes produced using infiltrate solution additives. J Electrochem Soc 157:B536–B541CrossRef
359.
go back to reference Haanappel VAC, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Rowekamp B, Tropartz C, Tietz F (2004) The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. J Power Sources 130:119–128CrossRef Haanappel VAC, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Rowekamp B, Tropartz C, Tietz F (2004) The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. J Power Sources 130:119–128CrossRef
360.
go back to reference Buyukaksoy A, Petrovsky V, Dogan F (2011) Redox stable solid oxide fuel cells with Ni-YSZ cermet anodes prepared by polymeric precursor infiltration. J Electrochem Soc 159:B232–B234CrossRef Buyukaksoy A, Petrovsky V, Dogan F (2011) Redox stable solid oxide fuel cells with Ni-YSZ cermet anodes prepared by polymeric precursor infiltration. J Electrochem Soc 159:B232–B234CrossRef
361.
go back to reference Singh CA, Bansal L, Tiwari P, Krishnan VV (2009) Strong metal support interactions of infiltrated Ni with TiO2 in a porous YSZ anode matrix-A possible method for Ni-stabilization. ECS Trans 25:1897–1904CrossRef Singh CA, Bansal L, Tiwari P, Krishnan VV (2009) Strong metal support interactions of infiltrated Ni with TiO2 in a porous YSZ anode matrix-A possible method for Ni-stabilization. ECS Trans 25:1897–1904CrossRef
363.
go back to reference Mehmeti A, Santoni F, Della Pietra M, McPhail SJ (2016) Life cycle assessment of molten carbonate fuel cellls: state of the art and strategies for the future. J Power Sources 308:97–108CrossRef Mehmeti A, Santoni F, Della Pietra M, McPhail SJ (2016) Life cycle assessment of molten carbonate fuel cellls: state of the art and strategies for the future. J Power Sources 308:97–108CrossRef
364.
go back to reference Frangini S (2010) Celle a combustibile a carbonati fusi per la cattura di CO2 da gas combusti: prospettive e limiti di applicazione in settori industriali soggetti alla direttiva EU-ETS Frangini S (2010) Celle a combustibile a carbonati fusi per la cattura di CO2 da gas combusti: prospettive e limiti di applicazione in settori industriali soggetti alla direttiva EU-ETS
365.
go back to reference Moreno A, McPhail SJ, Bove R (2008) International status of molten carbonate fuel cell (MCFC) technology Moreno A, McPhail SJ, Bove R (2008) International status of molten carbonate fuel cell (MCFC) technology
366.
go back to reference Au SF, McPhail SJ, Woudstra N, Hemmes K (2003) The influence of operating temperature on the efficiency of a combined heat and power fuel cell plant. J Power Sources 122:37–46CrossRef Au SF, McPhail SJ, Woudstra N, Hemmes K (2003) The influence of operating temperature on the efficiency of a combined heat and power fuel cell plant. J Power Sources 122:37–46CrossRef
367.
go back to reference Krause TR, Ahmed S, Kumar R (2006) ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B, Irvine, California, USA, ASME Proceedings. Irvine, California, USA, June 19–21, pp 787–792 Krause TR, Ahmed S, Kumar R (2006) ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B, Irvine, California, USA, ASME Proceedings. Irvine, California, USA, June 19–21, pp 787–792
368.
369.
go back to reference Clarke SH, Dicks AL, Pointon K, Smith TA, Swann A (1997) Catal Today 38:411–423CrossRef Clarke SH, Dicks AL, Pointon K, Smith TA, Swann A (1997) Catal Today 38:411–423CrossRef
370.
go back to reference Raissi AT, Banerjee A, Sheinkopf KG (1953) IEEE Proceedings of the 1997 32nd Intersociety Energy Conversion Engineering Conference, 3/4 Raissi AT, Banerjee A, Sheinkopf KG (1953) IEEE Proceedings of the 1997 32nd Intersociety Energy Conversion Engineering Conference, 3/4
371.
go back to reference Antolini E (2013) The stability of LiAlO2 powders and electrolyte matrices in molten carbonate fuel cell environment. Ceram Int 39:3463–3478CrossRef Antolini E (2013) The stability of LiAlO2 powders and electrolyte matrices in molten carbonate fuel cell environment. Ceram Int 39:3463–3478CrossRef
372.
go back to reference Maru HC, Marianowski LG (1976) Composite model of electrode electrolyte pore structure. In: Extended abstracts, vol 76-2. Fall Meeting of the Electrochemical Society, Las Vegas, NV, p 82. 17–22 Oct, 1976, Abstract No. 31 Maru HC, Marianowski LG (1976) Composite model of electrode electrolyte pore structure. In: Extended abstracts, vol 76-2. Fall Meeting of the Electrochemical Society, Las Vegas, NV, p 82. 17–22 Oct, 1976, Abstract No. 31
373.
go back to reference Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sust Energ Rev 16:981–989CrossRef Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sust Energ Rev 16:981–989CrossRef
374.
go back to reference Mustafa K, Anwar M, Rana MA, Khan ZS (2015) Development of cobalt doped lithiated NiO nano-composites and hot corrosion testing of LiAlO2 matrices for molten carbonate fuel cell applications. Mater Chem Phys 164:198–205CrossRef Mustafa K, Anwar M, Rana MA, Khan ZS (2015) Development of cobalt doped lithiated NiO nano-composites and hot corrosion testing of LiAlO2 matrices for molten carbonate fuel cell applications. Mater Chem Phys 164:198–205CrossRef
375.
go back to reference Cheng J, Guo L, Xu S, Zhang R (2014) The optimization of matrix preparation process and performance testing for molten carbonate fuel cell. J Chem 2014:7CrossRef Cheng J, Guo L, Xu S, Zhang R (2014) The optimization of matrix preparation process and performance testing for molten carbonate fuel cell. J Chem 2014:7CrossRef
376.
go back to reference Lin H, Zhou L, Zhang H (2007) Sintering mechanisms of porous matrix for molten carbonate fuel cell. J Inorg Mater 22:759–764 Lin H, Zhou L, Zhang H (2007) Sintering mechanisms of porous matrix for molten carbonate fuel cell. J Inorg Mater 22:759–764
377.
go back to reference Huijsmans JPP, Kraaij CJ, Makkus RC, Rietveld G, Sitters EF, Reijers HTJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86:117–121CrossRef Huijsmans JPP, Kraaij CJ, Makkus RC, Rietveld G, Sitters EF, Reijers HTJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86:117–121CrossRef
378.
go back to reference Sotouchi H, Watanabe Y, Kobayashi T, Murai M (1992) Mechanism of crystal growth of lithium aluminate particles in molten lithium and potassium carbonates. J Electrochem Soc 139:1127–1130CrossRef Sotouchi H, Watanabe Y, Kobayashi T, Murai M (1992) Mechanism of crystal growth of lithium aluminate particles in molten lithium and potassium carbonates. J Electrochem Soc 139:1127–1130CrossRef
379.
go back to reference Terada S, Nagashima I, Higaki K, Ito Y (1998) Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells. J Power Sources 75:223–229CrossRef Terada S, Nagashima I, Higaki K, Ito Y (1998) Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells. J Power Sources 75:223–229CrossRef
380.
go back to reference Morita H, Kawase M, Mugikura Y, Asano K (2010) J Power Sources 195:6988–6996CrossRef Morita H, Kawase M, Mugikura Y, Asano K (2010) J Power Sources 195:6988–6996CrossRef
381.
go back to reference Mitsushima S, Matsuzawa K, Kamiya N, Ota KI (2002) Improvement of MCFC cathode stability by additives. Electrochim Acta 47:2823–2830CrossRef Mitsushima S, Matsuzawa K, Kamiya N, Ota KI (2002) Improvement of MCFC cathode stability by additives. Electrochim Acta 47:2823–2830CrossRef
382.
go back to reference Arendt RM, Curran J (1980) Process of making electrolyte structure for molten carbonate fuel cells. US Patent 4,216,278 Arendt RM, Curran J (1980) Process of making electrolyte structure for molten carbonate fuel cells. US Patent 4,216,278
383.
go back to reference Bushnell CL, Bregoli LJ, Schroll CR. Electrolyte matrix for molten carbonate fuel cells. US Patent 4,322,482 Bushnell CL, Bregoli LJ, Schroll CR. Electrolyte matrix for molten carbonate fuel cells. US Patent 4,322,482
384.
go back to reference Frangini S, Scaccia S (2014) The role of foreign cations in enhancing the oxygen solubility properties of alkali molten carbonate systems: brief survey of existing data and new results. Int J Hydrog Energy 39:12266–12272CrossRef Frangini S, Scaccia S (2014) The role of foreign cations in enhancing the oxygen solubility properties of alkali molten carbonate systems: brief survey of existing data and new results. Int J Hydrog Energy 39:12266–12272CrossRef
385.
go back to reference Gong Y, Li X, Zhang L, Tharp W, Qin C, Huang K (2013) Molten carbonates as an effective oxygen reduction catalyst for 550 to 650 °C solid oxide fuel cells. J Electrochem Soc 160:F958–F964CrossRef Gong Y, Li X, Zhang L, Tharp W, Qin C, Huang K (2013) Molten carbonates as an effective oxygen reduction catalyst for 550 to 650 °C solid oxide fuel cells. J Electrochem Soc 160:F958–F964CrossRef
386.
go back to reference Frangini S, Scaccia S (2013) Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: a focus on the lithium-sodium carbonate eutectic system with magnesium additions. Thermochim Acta 574:55–62CrossRef Frangini S, Scaccia S (2013) Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: a focus on the lithium-sodium carbonate eutectic system with magnesium additions. Thermochim Acta 574:55–62CrossRef
387.
go back to reference Griffiths TR, Volkovic VA, Carper WR (2009) The structures of active intermediates in catalyst-enhanced molten salt oxidation and a new method for the complete destruction chemical warfare arsenals. Struct Chem 21:291–297CrossRef Griffiths TR, Volkovic VA, Carper WR (2009) The structures of active intermediates in catalyst-enhanced molten salt oxidation and a new method for the complete destruction chemical warfare arsenals. Struct Chem 21:291–297CrossRef
388.
go back to reference Hilmi A, Yuh Y, Farooque M (2014) Carbonate fuel cell anode: a review. ECS Trans 61:245–253CrossRef Hilmi A, Yuh Y, Farooque M (2014) Carbonate fuel cell anode: a review. ECS Trans 61:245–253CrossRef
389.
go back to reference Hilmi J, Yuh C, Farooque M (2012) US Patent 8,163,437 Hilmi J, Yuh C, Farooque M (2012) US Patent 8,163,437
390.
go back to reference Xie G, Ema GK, Ito Y (1994) J Appl Electrochem 24:360 Xie G, Ema GK, Ito Y (1994) J Appl Electrochem 24:360
394.
go back to reference Sanchez D, Ubertini S, Munoz de Escalona JM, Chacartegui R (2014) Int J Hydrog Energy 39:4081–4088CrossRef Sanchez D, Ubertini S, Munoz de Escalona JM, Chacartegui R (2014) Int J Hydrog Energy 39:4081–4088CrossRef
395.
go back to reference Mugikura Y, Asano K (2002) Performance of several types of fuel cells and factor analysis of performance. Electr Eng Jpn 138:885–892CrossRef Mugikura Y, Asano K (2002) Performance of several types of fuel cells and factor analysis of performance. Electr Eng Jpn 138:885–892CrossRef
396.
go back to reference Nguyen QM (1988) Technological status of Nickel oxide cathodes in molten carbonate fuel cells. J Power Sources 24:1–19CrossRef Nguyen QM (1988) Technological status of Nickel oxide cathodes in molten carbonate fuel cells. J Power Sources 24:1–19CrossRef
397.
go back to reference Hong MZ, Bae SC, Lee HS, Lee HC, Kim YM, Kim K (2003) Electrochim Acta 48:4213–4221CrossRef Hong MZ, Bae SC, Lee HS, Lee HC, Kim YM, Kim K (2003) Electrochim Acta 48:4213–4221CrossRef
398.
399.
400.
go back to reference Huang CM, Yuh C (1999) Electrolyte matrix for molten carbonate fuel cells. US Patent 5,869,203 Huang CM, Yuh C (1999) Electrolyte matrix for molten carbonate fuel cells. US Patent 5,869,203
401.
go back to reference Lee I, Kim W, Moon Y, Lim H, Lee D (2001) Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells. J Power Sources 101:90–95CrossRef Lee I, Kim W, Moon Y, Lim H, Lee D (2001) Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells. J Power Sources 101:90–95CrossRef
402.
go back to reference Doyon JD (1996) Fuel cell anode and fuel cell. US Patent 5,558,948 Doyon JD (1996) Fuel cell anode and fuel cell. US Patent 5,558,948
403.
go back to reference Guo L, Calo JM, DiCocco E, Bain EJ (2013) Development of a low temperature, molten hydroxide direct carbon fuel cell. Energy Fuel 27:1712–1719CrossRef Guo L, Calo JM, DiCocco E, Bain EJ (2013) Development of a low temperature, molten hydroxide direct carbon fuel cell. Energy Fuel 27:1712–1719CrossRef
405.
406.
go back to reference Guoyang Liu, A. Z., Jieshan Qiu, Yating Zhang, Jiangtao Cai, Yongqiang Dang, J Hydrogen Energy Int 2016, 41, 8576–8582. Guoyang Liu, A. Z., Jieshan Qiu, Yating Zhang, Jiangtao Cai, Yongqiang Dang, J Hydrogen Energy Int 2016, 41, 8576–8582.
407.
go back to reference Duan NQ, Tan Y, Yan D, Jia L, Chi B, Pu J, Li J (2016) Appl Energy 165:983–989CrossRef Duan NQ, Tan Y, Yan D, Jia L, Chi B, Pu J, Li J (2016) Appl Energy 165:983–989CrossRef
408.
go back to reference Giddey S, Badwal SPS, Kulkarni A, Munnings C (2012) Prog Energy Combust Sci 38:360–399CrossRef Giddey S, Badwal SPS, Kulkarni A, Munnings C (2012) Prog Energy Combust Sci 38:360–399CrossRef
409.
go back to reference Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S (2016) Fuel 180:270–277CrossRef Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S (2016) Fuel 180:270–277CrossRef
410.
go back to reference Zelenay P (2012) Fuel cells for portable power 1. Introduction to DMFCs; 2. Advanced materials and concepts for portable power fuel cells. Los Alamos National Laboratory Los Alamos Zelenay P (2012) Fuel cells for portable power 1. Introduction to DMFCs; 2. Advanced materials and concepts for portable power fuel cells. Los Alamos National Laboratory Los Alamos
411.
go back to reference Mai A, Schuler JA, Fleischhauer F, Nerlich V, Schuler A (2015) Hexis and the SOFC system Galileo 1000 N: experiences from lab and field testing. ECS Trans 68:109–116CrossRef Mai A, Schuler JA, Fleischhauer F, Nerlich V, Schuler A (2015) Hexis and the SOFC system Galileo 1000 N: experiences from lab and field testing. ECS Trans 68:109–116CrossRef
412.
go back to reference White BM, Lundberg WL, Pierre JF (2015) Accomplishments, status, and road map for the US Department of Energy’s Fossil Energy SOFC Program. ECS Trans 68:23–38CrossRef White BM, Lundberg WL, Pierre JF (2015) Accomplishments, status, and road map for the US Department of Energy’s Fossil Energy SOFC Program. ECS Trans 68:23–38CrossRef
413.
go back to reference Wachsman ED, Singhal SC (2010) Solid oxide fuel cell commercialization, research and challenges. Am Ceram Soc Bull 89:22–32 Wachsman ED, Singhal SC (2010) Solid oxide fuel cell commercialization, research and challenges. Am Ceram Soc Bull 89:22–32
Metadata
Title
Electrochemical Energy Production Using Fuel Cell Technologies
Authors
Viola Birss
Ehab El Sawy
Sanaz Ketabi
Parastoo Keyvanfar
Xiaoan Li
Jason Young
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52287-6_32