Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2019

27-02-2019

Electrochemical Properties of Commercially Pure Ti with TiB/TiB2 Coatings in Hanks’ Balanced Salt Solution

Authors: Adib Ebrahimi, Hamid Esfahani, Arash Fattah-alhosseini, Omid Imantalab

Published in: Journal of Materials Engineering and Performance | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, in order to evaluate the electrochemical performance of different titanium boride coatings created on the commercially pure titanium (CP-Ti), distinct electrochemical assays in Hanks’ balanced salt solution at 37 °C were conducted using pack cementation method. The results showed that the boriding at 900 and 1000 °C for 3 h creates the TiB whiskers and TiB whiskers/TiB2 dense layer on the top of the commercially pure titanium surface, respectively. It was also found that not only borides coating had good adhesion on the substrate, but also that improved the titanium hardness more than five times. Polarization plots clarified the passive behavior of borided specimens. Impedance spectroscopy tests indicated the acceptable corrosion behavior of the borided specimens in Hanks’ balanced salt solution. Mott–Schottky measurements indicated that the passive layers formed on the commercially pure titanium and the borided specimens had doped n-type semiconductor properties. Mott–Schottky measurements displayed that the donor density of the passive layers decreased with the rising time as well. Finally, because of better surface conditions to make a less defective and more protective passive layer, the borided specimen at 900 °C in comparison with the borided specimen at 1000 °C was shown to be the more suitable choice for bioimplant applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.M. Stevens, Biomaterials for Bone Tissue Engineering, Mater. Today, 2008, 11, p 18–25CrossRef M.M. Stevens, Biomaterials for Bone Tissue Engineering, Mater. Today, 2008, 11, p 18–25CrossRef
2.
go back to reference C.M. Wu, P.W. Peng, H.H. Chou, K.L. Ou, E. Sugiatno, C.M. Liu, and C.F. Huang, Microstructural, Mechanical and Biological Characterizations of the Promising Titanium tantalum Alloy for Biomedical Applications, J. Alloys Compd., 2018, 735, p 2604–2610CrossRef C.M. Wu, P.W. Peng, H.H. Chou, K.L. Ou, E. Sugiatno, C.M. Liu, and C.F. Huang, Microstructural, Mechanical and Biological Characterizations of the Promising Titanium tantalum Alloy for Biomedical Applications, J. Alloys Compd., 2018, 735, p 2604–2610CrossRef
3.
go back to reference S. Ramakrishna, M. Ramalingam, T.S. Sampath Kumar, and W.O. Soboyejo, Biomaterials: A Nano Approach, CRC Press, London, 2010, ISBN 9781420047813 S. Ramakrishna, M. Ramalingam, T.S. Sampath Kumar, and W.O. Soboyejo, Biomaterials: A Nano Approach, CRC Press, London, 2010, ISBN 9781420047813
4.
go back to reference V. Peretti, S. Ferraris, G. Gautier, C. Hellmich, O. Lahayne, B. Stella, S. Yamaguchi, and S. Spriano, Surface Treatments for Boriding of Ti6Al4V Alloy in View of Applications as a Biomaterial, Tribol. Int., 2018, 128, p 21–28CrossRef V. Peretti, S. Ferraris, G. Gautier, C. Hellmich, O. Lahayne, B. Stella, S. Yamaguchi, and S. Spriano, Surface Treatments for Boriding of Ti6Al4V Alloy in View of Applications as a Biomaterial, Tribol. Int., 2018, 128, p 21–28CrossRef
5.
go back to reference Y. Lin, J. Yao, Y. Lei, H. Fu, and L. Wang, Microstructure and Properties of TiB2-TiB Reinforced Titanium Matrix Composite Coating by Laser Cladding, Opt. Laser. Eng., 2016, 86, p 216–227CrossRef Y. Lin, J. Yao, Y. Lei, H. Fu, and L. Wang, Microstructure and Properties of TiB2-TiB Reinforced Titanium Matrix Composite Coating by Laser Cladding, Opt. Laser. Eng., 2016, 86, p 216–227CrossRef
6.
go back to reference M. Keddam and S. Taktak, Characterization and Diffusion Model for the Titanium Boride Layers Formed on the Ti6Al4V Alloy by Plasma Paste Boriding, Appl. Surf. Sci., 2017, 399(31), p 229–236CrossRef M. Keddam and S. Taktak, Characterization and Diffusion Model for the Titanium Boride Layers Formed on the Ti6Al4V Alloy by Plasma Paste Boriding, Appl. Surf. Sci., 2017, 399(31), p 229–236CrossRef
7.
go back to reference L.S. Ma, Y.H. Duan, and P. Li, Microstructure, Growth Kinetics and Some Mechanical Properties of Boride Layers Produced on Pure Titanium by Molten-Salt Boriding, J. Mater. Eng. Perform., 2017, 26, p 4544CrossRef L.S. Ma, Y.H. Duan, and P. Li, Microstructure, Growth Kinetics and Some Mechanical Properties of Boride Layers Produced on Pure Titanium by Molten-Salt Boriding, J. Mater. Eng. Perform., 2017, 26, p 4544CrossRef
8.
go back to reference G.K. Sireli, S. Timur, M. Urgen, and A. Erdemir, Electrochemical Boriding of Titanium for Improved Mechanical Properties, Surf. Coat. Technol., 2010, 204, p 3935–3939CrossRef G.K. Sireli, S. Timur, M. Urgen, and A. Erdemir, Electrochemical Boriding of Titanium for Improved Mechanical Properties, Surf. Coat. Technol., 2010, 204, p 3935–3939CrossRef
9.
go back to reference K.G. Anthymidis, G. Stergioudis, and D.N. Tsipas, Boride Coatings on Non-ferrous Materials in a Fluidized Bed Reactor and Their Properties, Sci. Technol. Adv. Mater., 2002, 3, p 303–311CrossRef K.G. Anthymidis, G. Stergioudis, and D.N. Tsipas, Boride Coatings on Non-ferrous Materials in a Fluidized Bed Reactor and Their Properties, Sci. Technol. Adv. Mater., 2002, 3, p 303–311CrossRef
10.
go back to reference B. Sarma, N.M. Tikekar, and K.S. Ravi Chandran, Kinetics of Growth of Superhard Boride Layers During Solid State Diffusion of Boron into Titanium, Ceram. Int., 2012, 38, p 6795–6805CrossRef B. Sarma, N.M. Tikekar, and K.S. Ravi Chandran, Kinetics of Growth of Superhard Boride Layers During Solid State Diffusion of Boron into Titanium, Ceram. Int., 2012, 38, p 6795–6805CrossRef
11.
go back to reference C. Guo, J. Zhou, J. Zhao, B. Guo, Y. Yu, H. Zhou, and J. Chen, Microstructure and Friction and Wear Behavior of Laser Boronizing Composite Coatings on Titanium Substrate, Appl. Surf. Sci., 2011, 257, p 4398–4405CrossRef C. Guo, J. Zhou, J. Zhao, B. Guo, Y. Yu, H. Zhou, and J. Chen, Microstructure and Friction and Wear Behavior of Laser Boronizing Composite Coatings on Titanium Substrate, Appl. Surf. Sci., 2011, 257, p 4398–4405CrossRef
12.
go back to reference P. Li, D. Liu, W. Bao, L. Ma, and Y. Duan, Surface Characterization and Diffusion Model Of Pack Borided TB2 Titanium Alloy, Ceram. Int., 2018, 44, p 18429–18437CrossRef P. Li, D. Liu, W. Bao, L. Ma, and Y. Duan, Surface Characterization and Diffusion Model Of Pack Borided TB2 Titanium Alloy, Ceram. Int., 2018, 44, p 18429–18437CrossRef
13.
go back to reference M. Keddam, S. Taktak, and S. Tasgetiren, A Diffusion Model for the Titanium Borides on Pure Titanium, Surf. Eng., 2016, 32, p 802–808CrossRef M. Keddam, S. Taktak, and S. Tasgetiren, A Diffusion Model for the Titanium Borides on Pure Titanium, Surf. Eng., 2016, 32, p 802–808CrossRef
14.
go back to reference Y. Duan, P. Li, Z. Chen, J. Shi, and L. Ma, Surface Evolution and Growth Kinetics of Ti6Al4V Alloy in Pack Boriding, J. Alloys Compd., 2018, 742, p 690–701CrossRef Y. Duan, P. Li, Z. Chen, J. Shi, and L. Ma, Surface Evolution and Growth Kinetics of Ti6Al4V Alloy in Pack Boriding, J. Alloys Compd., 2018, 742, p 690–701CrossRef
15.
go back to reference R. Chaudhari and R. Bauri, A Novel Functionally Gradient Ti/TiB/TiC Hybrid Composite with Wear Resistant Surface Layer, J. Alloys Compd., 2018, 744(5), p 438–444CrossRef R. Chaudhari and R. Bauri, A Novel Functionally Gradient Ti/TiB/TiC Hybrid Composite with Wear Resistant Surface Layer, J. Alloys Compd., 2018, 744(5), p 438–444CrossRef
16.
go back to reference B. Sivakumar, R. Singh, and L.C. Pathak, Corrosion Behavior of Titanium Boride Composite Coating Fabricated on Commercially Pure Titanium in Ringer’s Solution for Bioimplant Applications, Mat. Sci. Eng. C, 2015, 48, p 243–255CrossRef B. Sivakumar, R. Singh, and L.C. Pathak, Corrosion Behavior of Titanium Boride Composite Coating Fabricated on Commercially Pure Titanium in Ringer’s Solution for Bioimplant Applications, Mat. Sci. Eng. C, 2015, 48, p 243–255CrossRef
17.
go back to reference H. Esfahani, F. Dabir, M. Taheri, N. Sohrabi, and M.R. Toroghinejad, Sol–gel Derived Hydroxyapatite Coating on TiB2/TiB/Ti Substrate, Surf. Eng., 2012, 28, p 526–531CrossRef H. Esfahani, F. Dabir, M. Taheri, N. Sohrabi, and M.R. Toroghinejad, Sol–gel Derived Hydroxyapatite Coating on TiB2/TiB/Ti Substrate, Surf. Eng., 2012, 28, p 526–531CrossRef
18.
go back to reference H. Ding, G. Zhou, T. Liu, M. Xia, and X. Wang, Biotribological Properties of Ti/TiB2 Multilayers in Simulated Body Solution, Tribol. Int., 2015, 89, p 62–66CrossRef H. Ding, G. Zhou, T. Liu, M. Xia, and X. Wang, Biotribological Properties of Ti/TiB2 Multilayers in Simulated Body Solution, Tribol. Int., 2015, 89, p 62–66CrossRef
19.
go back to reference M. Dasa, K. Bhattacharya, S.A. Dittrick, C. Mandal, V.K. Balla, T.S. Sampath Kumar, A. Bandyopadhyay, and I. Manna, In Situ Synthesized TiB-TiN Reinforced Ti6Al4V Alloy Composite Coatings: Microstructure, Tribological and In Vitro Biocompatibility, J. Mech. Behav. Biomed., 2014, 29, p 259–271CrossRef M. Dasa, K. Bhattacharya, S.A. Dittrick, C. Mandal, V.K. Balla, T.S. Sampath Kumar, A. Bandyopadhyay, and I. Manna, In Situ Synthesized TiB-TiN Reinforced Ti6Al4V Alloy Composite Coatings: Microstructure, Tribological and In Vitro Biocompatibility, J. Mech. Behav. Biomed., 2014, 29, p 259–271CrossRef
20.
go back to reference Verein-Deutscher-Ingenieure, Daimler Benz Adhesion Test VDI 3198, VDIVerlag, Dusseldorf, 1992, p 7. Verein-Deutscher-Ingenieure, Daimler Benz Adhesion Test VDI 3198, VDIVerlag, Dusseldorf, 1992, p 7.
21.
go back to reference X.X. Xu, F.L. Nie, J.X. Zhang, W. Zheng, Y.F. Zheng, C. Hu, and G. Yang, Corrosion and Ion Release Behavior of Ultra-Fine Grained Bulk Pure Copper Fabricated by ECAP in Hanks Solution as Potential Biomaterial for Contraception, Mater. Lett., 2010, 64, p 524–527CrossRef X.X. Xu, F.L. Nie, J.X. Zhang, W. Zheng, Y.F. Zheng, C. Hu, and G. Yang, Corrosion and Ion Release Behavior of Ultra-Fine Grained Bulk Pure Copper Fabricated by ECAP in Hanks Solution as Potential Biomaterial for Contraception, Mater. Lett., 2010, 64, p 524–527CrossRef
22.
go back to reference B. Sarma and K.S. Ravi Chandran, Accelerated Kinetics of Surface Hardening by Diffusion Near Phase Transition Temperature: Mechanism of Growth of Boride Layers on Titanium, Acta Mater., 2011, 59, p 4216–4228CrossRef B. Sarma and K.S. Ravi Chandran, Accelerated Kinetics of Surface Hardening by Diffusion Near Phase Transition Temperature: Mechanism of Growth of Boride Layers on Titanium, Acta Mater., 2011, 59, p 4216–4228CrossRef
23.
go back to reference N. Makuch, M. Kulka, M. Keddam, S. Taktak, V. Ataibis, and P. Dziarski, Growth Kinetics and Some Mechanical Properties of Two-Phase Boride Layers Produced on Commercially Pure Titanium During Plasma Paste Boriding, Thin Solid Films, 2017, 626, p 25–37CrossRef N. Makuch, M. Kulka, M. Keddam, S. Taktak, V. Ataibis, and P. Dziarski, Growth Kinetics and Some Mechanical Properties of Two-Phase Boride Layers Produced on Commercially Pure Titanium During Plasma Paste Boriding, Thin Solid Films, 2017, 626, p 25–37CrossRef
24.
go back to reference M. Keddam and S. Taktak, Characterization and Diffusion Model for the Titanium Boride Layers Formed on the Ti6Al4V Alloy by Plasma Paste Boriding, Appl. Surf. Sci., 2017, 399, p 229–236CrossRef M. Keddam and S. Taktak, Characterization and Diffusion Model for the Titanium Boride Layers Formed on the Ti6Al4V Alloy by Plasma Paste Boriding, Appl. Surf. Sci., 2017, 399, p 229–236CrossRef
25.
go back to reference D. Tijo and M. Masanta, In-Situ TiC-TiB2 Coating on Ti-6Al-4V Alloy by Tungsten Inert Gas (TIG) Cladding Method: Part-II, Mechanical Performance, Surf. Coat. Tech., 2018, 344, p 579–589CrossRef D. Tijo and M. Masanta, In-Situ TiC-TiB2 Coating on Ti-6Al-4V Alloy by Tungsten Inert Gas (TIG) Cladding Method: Part-II, Mechanical Performance, Surf. Coat. Tech., 2018, 344, p 579–589CrossRef
26.
go back to reference Y. Lin, Y. Lei, X. Li, X. Zhi, and H. Fu, A Study of TiB2/TiB Gradient Coating by Laser Cladding on Titanium Alloy, Opt. Laser Eng., 2016, 82, p 48–55CrossRef Y. Lin, Y. Lei, X. Li, X. Zhi, and H. Fu, A Study of TiB2/TiB Gradient Coating by Laser Cladding on Titanium Alloy, Opt. Laser Eng., 2016, 82, p 48–55CrossRef
27.
go back to reference E. Damerchi, A. Abdollah-zadeh, R. Poursalehi, and M. Salari Mehr, Effects of Functionally Graded TiN Layer and Deposition Temperature on the Structure and Surface Properties of TiCN Coating Deposited on Plasma Nitrided H13 Steel by PACVD Method, J. Alloys Compd., 2019, 772, p 612–624CrossRef E. Damerchi, A. Abdollah-zadeh, R. Poursalehi, and M. Salari Mehr, Effects of Functionally Graded TiN Layer and Deposition Temperature on the Structure and Surface Properties of TiCN Coating Deposited on Plasma Nitrided H13 Steel by PACVD Method, J. Alloys Compd., 2019, 772, p 612–624CrossRef
28.
go back to reference C.Y. Lu, W. Diyatmika, BSh Lou, and J.W. Lee, Superimposition of High Power Impulse and Middle Frequency Magnetron Sputtering for Fabrication of CrTiBN Multicomponent Hard Coatings, Surf. Coat. Technol., 2018, 350, p 962–970CrossRef C.Y. Lu, W. Diyatmika, BSh Lou, and J.W. Lee, Superimposition of High Power Impulse and Middle Frequency Magnetron Sputtering for Fabrication of CrTiBN Multicomponent Hard Coatings, Surf. Coat. Technol., 2018, 350, p 962–970CrossRef
29.
go back to reference A. Fattah-Alhosseini, A.R. Ansari, Y. Mazaheri, and M.K. Keshavarz, Effect of Immersion Time on the Passive and Electrochemical Response of Annealed and Nano-Grained Commercial Pure Titanium in Ringer’s Physiological Solution at 37 °C, Mat. Sci. Eng. C, 2017, 71, p 771–779CrossRef A. Fattah-Alhosseini, A.R. Ansari, Y. Mazaheri, and M.K. Keshavarz, Effect of Immersion Time on the Passive and Electrochemical Response of Annealed and Nano-Grained Commercial Pure Titanium in Ringer’s Physiological Solution at 37 °C, Mat. Sci. Eng. C, 2017, 71, p 771–779CrossRef
30.
go back to reference A. Fattah-alhosseini, O. Imantalab, and F.R. Attarzadeh, Enhancing the Electrochemical Behavior of Pure Copper by Cyclic Potentiodynamic Passivation: A Comparison Between Coarse- and Nano-Grained Pure Copper, Metal. Mater. Trans. B, 2016, 47, p 2761–2770CrossRef A. Fattah-alhosseini, O. Imantalab, and F.R. Attarzadeh, Enhancing the Electrochemical Behavior of Pure Copper by Cyclic Potentiodynamic Passivation: A Comparison Between Coarse- and Nano-Grained Pure Copper, Metal. Mater. Trans. B, 2016, 47, p 2761–2770CrossRef
31.
go back to reference A. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48, p 1696–1720CrossRef A. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48, p 1696–1720CrossRef
32.
go back to reference A. Ebrahimi, H. Esfahani, A. Fattah-alhosseini, and O. Imantalab, In-Vitro Electrochemical Study of TiB/TiB2 Composite Coating on Titanium in Ringer’s Solution, J. Alloys Compd., 2018, 765, p 826–834CrossRef A. Ebrahimi, H. Esfahani, A. Fattah-alhosseini, and O. Imantalab, In-Vitro Electrochemical Study of TiB/TiB2 Composite Coating on Titanium in Ringer’s Solution, J. Alloys Compd., 2018, 765, p 826–834CrossRef
33.
go back to reference B. Sivakumar, L.C. Pathak, and R. Singh, Response of Boride Coating on the Ti-6Al-4V Alloy to Corrosion and Fretting Corrosion Behavior in Ringer’s Solution for Bio-implant Application, Appl. Surf. Sci., 2018, 433, p 1158–1174CrossRef B. Sivakumar, L.C. Pathak, and R. Singh, Response of Boride Coating on the Ti-6Al-4V Alloy to Corrosion and Fretting Corrosion Behavior in Ringer’s Solution for Bio-implant Application, Appl. Surf. Sci., 2018, 433, p 1158–1174CrossRef
34.
go back to reference R. Singh, M. Martin, and N.B. Dahotre, Influence of Laser Surface Modification on Corrosion Behavior of Stainless Steel 316L and Ti-6Al-4V in Simulated Biofluid, Surf. Eng., 2013, 21, p 297–306CrossRef R. Singh, M. Martin, and N.B. Dahotre, Influence of Laser Surface Modification on Corrosion Behavior of Stainless Steel 316L and Ti-6Al-4V in Simulated Biofluid, Surf. Eng., 2013, 21, p 297–306CrossRef
35.
go back to reference S. Gnanavel, S. Ponnusamy, L. Mohan, R. Radhika, C. Muthamizhchelvan, and K. Ramasubramanian, Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks’ Solution, J. Mater. Eng. Perform., 2018, 27, p 1635CrossRef S. Gnanavel, S. Ponnusamy, L. Mohan, R. Radhika, C. Muthamizhchelvan, and K. Ramasubramanian, Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks’ Solution, J. Mater. Eng. Perform., 2018, 27, p 1635CrossRef
36.
go back to reference S. Paul and K. Yadav, Corrosion Behavior of Burface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies, J. Mater. Eng. Perform., 2011, 20, p 422CrossRef S. Paul and K. Yadav, Corrosion Behavior of Burface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies, J. Mater. Eng. Perform., 2011, 20, p 422CrossRef
37.
go back to reference H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Impedance Spectroscopic Study of Corrosion Inhibition of Copper by Surfactants in the Acidic Solutions, Corros. Sci., 2003, 45, p 867–882CrossRef H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Impedance Spectroscopic Study of Corrosion Inhibition of Copper by Surfactants in the Acidic Solutions, Corros. Sci., 2003, 45, p 867–882CrossRef
38.
go back to reference H. Luo, C. Dong, X. Li, and K. Xiao, The Electrochemical Behaviour of 2205 Duplex Stainless Steel in Alkaline Solutions with Different pH in the Presence of Chloride, Electrochim. Acta, 2012, 64, p 211–220CrossRef H. Luo, C. Dong, X. Li, and K. Xiao, The Electrochemical Behaviour of 2205 Duplex Stainless Steel in Alkaline Solutions with Different pH in the Presence of Chloride, Electrochim. Acta, 2012, 64, p 211–220CrossRef
39.
go back to reference H. Luo, S. Gao, C. Dong, and X. Li, Characterization of Electrochemical and Passive Behaviour of Alloy 59 in Acid Solution, Electrochim. Acta, 2014, 135, p 412–419CrossRef H. Luo, S. Gao, C. Dong, and X. Li, Characterization of Electrochemical and Passive Behaviour of Alloy 59 in Acid Solution, Electrochim. Acta, 2014, 135, p 412–419CrossRef
40.
go back to reference M. Izadi, T. Shahrabi, and B. Ramezanzadeh, Active Corrosion Protection Performance of an Epoxy Coating Applied on the Mild Steel Modified with an Eco-Friendly Sol-Gel Film Impregnated with Green Corrosion Inhibitor Loaded Nanocontainers, Appl. Surf. Sci., 2018, 440, p 491–505CrossRef M. Izadi, T. Shahrabi, and B. Ramezanzadeh, Active Corrosion Protection Performance of an Epoxy Coating Applied on the Mild Steel Modified with an Eco-Friendly Sol-Gel Film Impregnated with Green Corrosion Inhibitor Loaded Nanocontainers, Appl. Surf. Sci., 2018, 440, p 491–505CrossRef
41.
go back to reference H. Akhavan, M. Izadi, I. Mohammadi, T. Shahrabi, and B. Ramezanzadeh, The Synergistic Effect of BTA-Co System on the Corrosion Inhibition of Mild Steel in 3.5 wt% NaCl Solution, J. Electrochem. Soc., 2018, 165, p C670–C680CrossRef H. Akhavan, M. Izadi, I. Mohammadi, T. Shahrabi, and B. Ramezanzadeh, The Synergistic Effect of BTA-Co System on the Corrosion Inhibition of Mild Steel in 3.5 wt% NaCl Solution, J. Electrochem. Soc., 2018, 165, p C670–C680CrossRef
42.
go back to reference F. Rosalbino, R. Carlini, G. Zanicchi, and G. Scavino, Microstructural Characterization and Corrosion Behavior of Lead, Bismuth and Antimony Tellurides Prepared by Melting, J. Alloys Compd., 2013, 567, p 26–32CrossRef F. Rosalbino, R. Carlini, G. Zanicchi, and G. Scavino, Microstructural Characterization and Corrosion Behavior of Lead, Bismuth and Antimony Tellurides Prepared by Melting, J. Alloys Compd., 2013, 567, p 26–32CrossRef
43.
go back to reference A. Fattah-alhosseini, F.R. Attarzadeh, S. Vafaeian, M. Haghshenas, and M.K. Keshavarz, Electrochemical Behavior Assessment of Tantalum in Aqueous KOH Solutions, Int. J. Refract. Met. Hard Mater., 2017, 64, p 168–175CrossRef A. Fattah-alhosseini, F.R. Attarzadeh, S. Vafaeian, M. Haghshenas, and M.K. Keshavarz, Electrochemical Behavior Assessment of Tantalum in Aqueous KOH Solutions, Int. J. Refract. Met. Hard Mater., 2017, 64, p 168–175CrossRef
44.
go back to reference M. Schönleber, D. Klotz, and E. Ivers-Tiffée, A Method for Improving the Robustness of Linear Kramers–Kronig Validity Tests, Electrochim. Acta, 2014, 131, p 20–27CrossRef M. Schönleber, D. Klotz, and E. Ivers-Tiffée, A Method for Improving the Robustness of Linear Kramers–Kronig Validity Tests, Electrochim. Acta, 2014, 131, p 20–27CrossRef
45.
go back to reference F.R. Attarzadeh, N. Attarzadeh, S. Vafaeian, and A. Fattah-Alhosseini, Effect of pH on the Electrochemical Behavior of TANTALUM in Borate Buffer Solutions, J. Mater. Eng. Perform., 2016, 25, p 4199–4209CrossRef F.R. Attarzadeh, N. Attarzadeh, S. Vafaeian, and A. Fattah-Alhosseini, Effect of pH on the Electrochemical Behavior of TANTALUM in Borate Buffer Solutions, J. Mater. Eng. Perform., 2016, 25, p 4199–4209CrossRef
46.
go back to reference C. Escrivà-Cerdán, E. Blasco-Tamarit, D. García-García, J. García-Antón, and A. Guenbour, Effect of Potential Formation on the Electrochemical Behaviour of a Highly Alloyed Austenitic Stainless Steel in Contaminated Phosphoric Acid at Different Temperatures, Electrochim. Acta, 2012, 80, p 248–256CrossRef C. Escrivà-Cerdán, E. Blasco-Tamarit, D. García-García, J. García-Antón, and A. Guenbour, Effect of Potential Formation on the Electrochemical Behaviour of a Highly Alloyed Austenitic Stainless Steel in Contaminated Phosphoric Acid at Different Temperatures, Electrochim. Acta, 2012, 80, p 248–256CrossRef
47.
go back to reference L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108CrossRef L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108CrossRef
48.
go back to reference X. Cheng and S.G. Roscoe, Corrosion Behavior of Titanium in the Presence of Calcium Phosphate and Serum Proteins, Biomaterials, 2005, 26, p 7350–7356CrossRef X. Cheng and S.G. Roscoe, Corrosion Behavior of Titanium in the Presence of Calcium Phosphate and Serum Proteins, Biomaterials, 2005, 26, p 7350–7356CrossRef
49.
go back to reference S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Effect of Grain Refinement on Mechanical and Electrochemical Properties of Ultra-Fine Grained AA1050 Fabricated via ARB Process, J. Manuf. Process., 2016, 22, p 269–277CrossRef S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Effect of Grain Refinement on Mechanical and Electrochemical Properties of Ultra-Fine Grained AA1050 Fabricated via ARB Process, J. Manuf. Process., 2016, 22, p 269–277CrossRef
50.
go back to reference C. Anandan and L. Mohan, In Vitro Corrosion Behavior and Apatite Growth of Oxygen Plasma Ion Implanted Titanium Alloy β-21S, J. Mater. Eng. Perform., 2013, 22, p 3507CrossRef C. Anandan and L. Mohan, In Vitro Corrosion Behavior and Apatite Growth of Oxygen Plasma Ion Implanted Titanium Alloy β-21S, J. Mater. Eng. Perform., 2013, 22, p 3507CrossRef
51.
go back to reference A. Fattah-alhosseini and S. Vafaeian, Passivation Behavior of a Ferritic Stainless Steel In concentrated Alkaline Solutions, J. Mater. Res. Tech., 2015, 4, p 423–428CrossRef A. Fattah-alhosseini and S. Vafaeian, Passivation Behavior of a Ferritic Stainless Steel In concentrated Alkaline Solutions, J. Mater. Res. Tech., 2015, 4, p 423–428CrossRef
52.
go back to reference A. Fattah-alhosseini, M. Vakili-Azghandi, M. Sheikhi, and M.K. Keshavarz, Passive and Electrochemical Response of Friction Stir Processed Pure Titanium, J. Alloys Compd., 2017, 704, p 499–508CrossRef A. Fattah-alhosseini, M. Vakili-Azghandi, M. Sheikhi, and M.K. Keshavarz, Passive and Electrochemical Response of Friction Stir Processed Pure Titanium, J. Alloys Compd., 2017, 704, p 499–508CrossRef
53.
go back to reference M.C. Sellers and E.G. Seebauer, Measurement Method for Carrier Concentration in TiO2 via the Mott–Schottky Approach, Thin Solid Films, 2011, 519, p 2103–2110CrossRef M.C. Sellers and E.G. Seebauer, Measurement Method for Carrier Concentration in TiO2 via the Mott–Schottky Approach, Thin Solid Films, 2011, 519, p 2103–2110CrossRef
54.
go back to reference B. Roh and D. Macdonald, Effect of Oxygen Vacancies in Anodic Titanium Oxide Films on the Kinetics of the Oxygen Electrode Reaction, Russ. J. Electrochem., 2007, 43, p 125–135CrossRef B. Roh and D. Macdonald, Effect of Oxygen Vacancies in Anodic Titanium Oxide Films on the Kinetics of the Oxygen Electrode Reaction, Russ. J. Electrochem., 2007, 43, p 125–135CrossRef
55.
go back to reference A. Fattah-Alhosseini, O. Imantalab, and G. Ansari, The Role of Grain Refinement and Film Formation Potential on the Electrochemical Behavior of Commercial Pure Titanium in Hanks’ Physiological Solution, Mat. Sci. Eng. C, 2017, 71, p 827–834CrossRef A. Fattah-Alhosseini, O. Imantalab, and G. Ansari, The Role of Grain Refinement and Film Formation Potential on the Electrochemical Behavior of Commercial Pure Titanium in Hanks’ Physiological Solution, Mat. Sci. Eng. C, 2017, 71, p 827–834CrossRef
56.
go back to reference L. Hamadou, A. Kadri, and N. Benbrahim, Characterisation of Passive Films Formed on Low Carbon Steel in Borate Buffer Solution (pH 9.2) by Electrochemical Impedance Spectroscopy, Appl. Surf. Sci., 2005, 252, p 1510–1519CrossRef L. Hamadou, A. Kadri, and N. Benbrahim, Characterisation of Passive Films Formed on Low Carbon Steel in Borate Buffer Solution (pH 9.2) by Electrochemical Impedance Spectroscopy, Appl. Surf. Sci., 2005, 252, p 1510–1519CrossRef
57.
go back to reference B.S. Covino, Jr., S.D. Cramer, J.P. Carter, and D. Schlain, Corrosion of Titanium Diboride, J. Less Common Met., 1975, 41, p 211–224CrossRef B.S. Covino, Jr., S.D. Cramer, J.P. Carter, and D. Schlain, Corrosion of Titanium Diboride, J. Less Common Met., 1975, 41, p 211–224CrossRef
58.
go back to reference M. Pourbaix, Atlas of Electrochemical Equilibriums in Aqueous Solutions, Pergamon Press, Oxford, 1966, p 213–222 M. Pourbaix, Atlas of Electrochemical Equilibriums in Aqueous Solutions, Pergamon Press, Oxford, 1966, p 213–222
Metadata
Title
Electrochemical Properties of Commercially Pure Ti with TiB/TiB2 Coatings in Hanks’ Balanced Salt Solution
Authors
Adib Ebrahimi
Hamid Esfahani
Arash Fattah-alhosseini
Omid Imantalab
Publication date
27-02-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03930-6

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partners