Skip to main content
Top
Published in: Journal of Materials Science 16/2014

01-08-2014

Electrochemical properties of V2O5/carbon composite electrodes in aqueous solutions

Authors: Kota Kamei, Shinya Suzuki, Masaru Miyayama

Published in: Journal of Materials Science | Issue 16/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The reaction mechanism of V2O5 xerogel and the electrode properties of V2O5/carbon composites in an aqueous electrolyte solution were examined to obtain high-performance electrodes for rechargeable proton batteries. Based on the results of the chemical analysis of the electrode, proton intercalation is suggested to be the dominant reaction mechanism. By using the relationship between the capacity and current density of a thin-film electrode consisting of V2O5 xerogel, the diffusion coefficient in the V2O5 xerogel was determined to be 8 ± 1 × 10−11 cm2 s−1. The V2O5/carbon composite electrode was prepared by drying a homogeneous dispersion of carbon particles in the V2O5 sol. The composite electrodes showed a large capacity of 460 mAh g−1 at a current density of 1 A g−1 and maintained a relatively large capacity of 160 mAh g−1 at 100 A g−1. These properties were attributed to the homogeneous microstructure of the V2O5/carbon composites. The V2O5/carbon composite electrodes were thus revealed as high-performance electrodes with large capacities and excellent high-rate capabilities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H (2007) An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed 46:295–297CrossRef Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H (2007) An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed 46:295–297CrossRef
2.
go back to reference Tang W, Liu LL, Tian S, Li L, Yue YB, Wu YP, Guan SY, Zhu K (2010) Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem Commun 12:1524–1526CrossRef Tang W, Liu LL, Tian S, Li L, Yue YB, Wu YP, Guan SY, Zhu K (2010) Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem Commun 12:1524–1526CrossRef
3.
go back to reference Tang W, Tian S, Liu LL, Li L, Zhang HP, Yue YB, Bai Y, Wu YP, Zhu K (2011) Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:205–208CrossRef Tang W, Tian S, Liu LL, Li L, Zhang HP, Yue YB, Bai Y, Wu YP, Zhu K (2011) Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:205–208CrossRef
4.
go back to reference Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York
5.
go back to reference Pickett DF, Maloy JT (1978) Microelectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes. J Electrochem Soc 125:1026–1032CrossRef Pickett DF, Maloy JT (1978) Microelectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes. J Electrochem Soc 125:1026–1032CrossRef
6.
go back to reference Watanabe K, Kikuoka T, Kumagai N (1995) Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem 25:219–226CrossRef Watanabe K, Kikuoka T, Kumagai N (1995) Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem 25:219–226CrossRef
7.
go back to reference Mondoloni C, Laborde M, Rioux J, Andoni E, Lévy-Clément C (1992) Rechargeable alkaline manganese dioxide batteries. 1. In situ X-ray diffraction investigation of the H+/γ-MnO2 (EMD-type) insertion system. J Electrochem Soc 139:954–959CrossRef Mondoloni C, Laborde M, Rioux J, Andoni E, Lévy-Clément C (1992) Rechargeable alkaline manganese dioxide batteries. 1. In situ X-ray diffraction investigation of the H+/γ-MnO2 (EMD-type) insertion system. J Electrochem Soc 139:954–959CrossRef
8.
go back to reference Amarilla JM, Tedjar F, Poinsignon C (1994) Influence of KOH concentration on the γ-MnO2 redox mechanism. Electrochim Acta 39:2321–2331CrossRef Amarilla JM, Tedjar F, Poinsignon C (1994) Influence of KOH concentration on the γ-MnO2 redox mechanism. Electrochim Acta 39:2321–2331CrossRef
9.
go back to reference Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159:A1425–A1430CrossRef Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159:A1425–A1430CrossRef
10.
go back to reference Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics 233:32–37CrossRef Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics 233:32–37CrossRef
11.
go back to reference Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Effects of microstructure on electrode properties of nanosheet-derived H x (Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors. Nanomaterials 3:204–220CrossRef Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Effects of microstructure on electrode properties of nanosheet-derived H x (Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors. Nanomaterials 3:204–220CrossRef
12.
go back to reference Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrochemical properties of layer-structured H x (Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors in alkaline aqueous solutions. J Asian Ceram Soc 1:71–76CrossRef Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrochemical properties of layer-structured H x (Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors in alkaline aqueous solutions. J Asian Ceram Soc 1:71–76CrossRef
13.
go back to reference Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110:6015–6019CrossRef Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110:6015–6019CrossRef
14.
go back to reference Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925CrossRef Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925CrossRef
15.
go back to reference Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733CrossRef Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733CrossRef
16.
go back to reference Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J, Tong Y, Wang ZL (2012) WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944CrossRef Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J, Tong Y, Wang ZL (2012) WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944CrossRef
17.
go back to reference Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
18.
go back to reference Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced grapheme oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338CrossRef Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced grapheme oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338CrossRef
19.
go back to reference Ugaji M, Hibino M, Kudo T (1995) Evaluation of a new type of vanadium oxide from peroxo-polyvanadate as a cathode material for rechargeable lithium batteries. J Electrochem Soc 142:3664–3668CrossRef Ugaji M, Hibino M, Kudo T (1995) Evaluation of a new type of vanadium oxide from peroxo-polyvanadate as a cathode material for rechargeable lithium batteries. J Electrochem Soc 142:3664–3668CrossRef
20.
go back to reference Giorgetti M, Passerini S, Smyrl WH, Mukerjee S, Yang XQ, McBreen J (1999) In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation. J Electrochem Soc 146:2387–2392CrossRef Giorgetti M, Passerini S, Smyrl WH, Mukerjee S, Yang XQ, McBreen J (1999) In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation. J Electrochem Soc 146:2387–2392CrossRef
21.
22.
go back to reference Parent MJ, Passerini S, Owens BB, Smyrl WH (1999) Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes. J Electrochem Soc 146:1346–1350CrossRef Parent MJ, Passerini S, Owens BB, Smyrl WH (1999) Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes. J Electrochem Soc 146:1346–1350CrossRef
23.
go back to reference Passerini S, Ressler JJ, Le DB, Owens BB, Smyrl WH (1999) High rate electrodes of V2O5 aerogel. Electrochim Acta 44:2209–2217CrossRef Passerini S, Ressler JJ, Le DB, Owens BB, Smyrl WH (1999) High rate electrodes of V2O5 aerogel. Electrochim Acta 44:2209–2217CrossRef
24.
go back to reference Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K (2002) Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes. Solid State Ionics 152–153:833–841CrossRef Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K (2002) Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes. Solid State Ionics 152–153:833–841CrossRef
25.
go back to reference Yamada H, Tagawa K, Komatsu M, Moriguchi I, Kudo T (2007) High power battery electrodes using nanoporous V2O5/carbon composites. J Phys Chem C 111:8397–8402CrossRef Yamada H, Tagawa K, Komatsu M, Moriguchi I, Kudo T (2007) High power battery electrodes using nanoporous V2O5/carbon composites. J Phys Chem C 111:8397–8402CrossRef
26.
go back to reference Stojković I, Cvjetićanin N, Pašti I, Mitrić M, Mentus S (2009) Electrochemical behavior of V2O5 xerogel in aqueous LiNO3 solution. Electrochem Commun 11:1512–1514CrossRef Stojković I, Cvjetićanin N, Pašti I, Mitrić M, Mentus S (2009) Electrochemical behavior of V2O5 xerogel in aqueous LiNO3 solution. Electrochem Commun 11:1512–1514CrossRef
27.
go back to reference Stojković I, Cvjetićanin N, Marković S, Mitrić M, Mentus S (2010) Electrochemical behavior of V2O5 xerogel and V2O5 xerogel/C composite in an aqueous LiNO3 and Mg(NO3)2 solutions. Acta Phys Pol A 117:837–840 Stojković I, Cvjetićanin N, Marković S, Mitrić M, Mentus S (2010) Electrochemical behavior of V2O5 xerogel and V2O5 xerogel/C composite in an aqueous LiNO3 and Mg(NO3)2 solutions. Acta Phys Pol A 117:837–840
28.
go back to reference Hibino M, Ugaji M, Kishimoto A, Kudo T (1995) Preparation and lithium intercalation of a new vanadium oxide with a two-dimensional structure. Solid State Ionics 79:239–244CrossRef Hibino M, Ugaji M, Kishimoto A, Kudo T (1995) Preparation and lithium intercalation of a new vanadium oxide with a two-dimensional structure. Solid State Ionics 79:239–244CrossRef
29.
go back to reference Imamura D, Miyayama M, Hibino M, Kudo T (2003) Mg intercalation properties into V2O5 gel/carbon composites under high-rate conduction. J Electrochem Soc 150:A753–A758CrossRef Imamura D, Miyayama M, Hibino M, Kudo T (2003) Mg intercalation properties into V2O5 gel/carbon composites under high-rate conduction. J Electrochem Soc 150:A753–A758CrossRef
30.
go back to reference Suzuki S, Miyayama M (2013) Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition. J Electrochem Soc 160:A293–A296CrossRef Suzuki S, Miyayama M (2013) Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition. J Electrochem Soc 160:A293–A296CrossRef
31.
go back to reference Wang X, Sebastian PJ, Millan AC, Parkhutik PV, Gamboa SA (2005) Electrochemical study of nanostructured multiphase nickel hydroxide. J New Mater Electrochem Syst 8:101–108 Wang X, Sebastian PJ, Millan AC, Parkhutik PV, Gamboa SA (2005) Electrochemical study of nanostructured multiphase nickel hydroxide. J New Mater Electrochem Syst 8:101–108
32.
go back to reference Baddour R, Pereira-Ramos JP, Messina R, Perichon J (1991) A thermodynamic, structural and kinetic study of the electrochemical lithium intercalation into the xerogel V2O5·1.6H2O in a propylene carbonate solution. J Electroanal Chem 314:81–101CrossRef Baddour R, Pereira-Ramos JP, Messina R, Perichon J (1991) A thermodynamic, structural and kinetic study of the electrochemical lithium intercalation into the xerogel V2O5·1.6H2O in a propylene carbonate solution. J Electroanal Chem 314:81–101CrossRef
33.
go back to reference Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290CrossRef Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290CrossRef
Metadata
Title
Electrochemical properties of V2O5/carbon composite electrodes in aqueous solutions
Authors
Kota Kamei
Shinya Suzuki
Masaru Miyayama
Publication date
01-08-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8267-3

Other articles of this Issue 16/2014

Journal of Materials Science 16/2014 Go to the issue

Premium Partners