Skip to main content
Top
Published in: Journal of Materials Science 7/2017

29-09-2016 | Batteries and Supercapacitors

Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes

Authors: Taeho Yoon, Navid Chapman, Cao Cuong Nguyen, Brett L. Lucht

Published in: Journal of Materials Science | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel polyimide has been investigated as a conductive binder for silicon electrodes. The electrochemical properties of a polyimide electrode, derived from pyromellitic dianhydride and 4,4′-oxydianiline, were characterized and the feasibility as a binder for silicon electrodes was investigated. When fully lithiated and delithiated (3 V–5 mV), the polyimide electrode demonstrates a large reversible capacity of 826 mAh g−1 in the first cycle. The ex situ IR spectra indicate that the carbonyl groups on imide rings are irreversibly reduced during earlier period of first lithiation. Further lithiation leads to removal of characteristic peaks of PO–PI as well as a significant decrease of peak intensities, which implies changes in chemical structure of the host material. Nevertheless, the PO–PI electrode delivers large reversible capacity in subsequent cycles. In the potential range that silicon operates (0.7 V–5 mV), the polyimide electrode remains in a highly lithiated state maintaining its electric conductivity. Silicon electrodes with polyimide binder exhibit superior capacity retention and coulombic efficiency in comparison to electrodes using insulating binders. The improvements are attributed to the reinforced electrical conductive network in the electrode laminate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531. doi:10.1021/nn204476h CrossRef Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531. doi:10.​1021/​nn204476h CrossRef
5.
go back to reference Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158(7):A798. doi:10.1149/1.3589300 CrossRef Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158(7):A798. doi:10.​1149/​1.​3589300 CrossRef
6.
go back to reference Nguyen CC, Lucht BL (2014) Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. J Electrochem Soc 161(12):A1933–A1938. doi:10.1149/2.0731412jes CrossRef Nguyen CC, Lucht BL (2014) Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. J Electrochem Soc 161(12):A1933–A1938. doi:10.​1149/​2.​0731412jes CrossRef
7.
go back to reference Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid State Lett 7(10):A306–A309. doi:10.1149/1.1792242 CrossRef Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid State Lett 7(10):A306–A309. doi:10.​1149/​1.​1792242 CrossRef
8.
go back to reference Yoon T, Nguyen CC, Seo DM, Lucht BL (2015) Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries. J Electrochem Soc 162(12):A2325–A2330. doi:10.1149/2.0731512jes CrossRef Yoon T, Nguyen CC, Seo DM, Lucht BL (2015) Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries. J Electrochem Soc 162(12):A2325–A2330. doi:10.​1149/​2.​0731512jes CrossRef
10.
go back to reference Liu WR, Wang JH, Wu HC, Shieh DT, Yang MH, Wu NL (2005) Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J Electrochem Soc 152(9):A1719–A1725. doi:10.1149/1.1954967 CrossRef Liu WR, Wang JH, Wu HC, Shieh DT, Yang MH, Wu NL (2005) Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J Electrochem Soc 152(9):A1719–A1725. doi:10.​1149/​1.​1954967 CrossRef
11.
go back to reference Yen Y-C, Chao S-C, Wu H-C, Wu N-L (2009) Study on solid-electrolyte-interphase of Si and C-coated si electrodes in lithium cells. J Electrochem Soc 156(2):A95–A102. doi:10.1149/1.3032230 CrossRef Yen Y-C, Chao S-C, Wu H-C, Wu N-L (2009) Study on solid-electrolyte-interphase of Si and C-coated si electrodes in lithium cells. J Electrochem Soc 156(2):A95–A102. doi:10.​1149/​1.​3032230 CrossRef
13.
go back to reference Philippe B, Dedryvere R, Allouche J, Lindgren F, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K (2012) Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater 24(6):1107–1115. doi:10.1021/cm2034195 CrossRef Philippe B, Dedryvere R, Allouche J, Lindgren F, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K (2012) Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater 24(6):1107–1115. doi:10.​1021/​cm2034195 CrossRef
15.
go back to reference Wu M, Sabisch JEC, Song X, Minor AM, Battaglia VS, Liu G (2013) In situ formed si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett 13(11):5397–5402. doi:10.1021/nl402953h CrossRef Wu M, Sabisch JEC, Song X, Minor AM, Battaglia VS, Liu G (2013) In situ formed si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett 13(11):5397–5402. doi:10.​1021/​nl402953h CrossRef
16.
go back to reference Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. doi:10.1002/aenm.201300882 Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. doi:10.​1002/​aenm.​201300882
19.
go back to reference Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010. doi:10.1021/am100871y CrossRef Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010. doi:10.​1021/​am100871y CrossRef
20.
go back to reference Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 51(35):8762–8767. doi:10.1002/anie.201201568 CrossRef Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 51(35):8762–8767. doi:10.​1002/​anie.​201201568 CrossRef
21.
go back to reference Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. doi:10.1038/ncomms2941 Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. doi:10.​1038/​ncomms2941
22.
go back to reference Kim S-M, Kim MH, Choi SY, Lee JG, Jang J, Lee JB, Ryu JH, Hwang SS, Park J-H, Shin K, Kim YG, Oh SM (2015) Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy Environ Sci. doi:10.1039/C5EE00472A Kim S-M, Kim MH, Choi SY, Lee JG, Jang J, Lee JB, Ryu JH, Hwang SS, Park J-H, Shin K, Kim YG, Oh SM (2015) Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy Environ Sci. doi:10.​1039/​C5EE00472A
23.
go back to reference Vogl US, Das PK, Weber AZ, Winter M, Kostecki R, Lux SF (2014) Mechanism of interactions between CMC binder and si single crystal facets. Langmuir 30(34):10299–10307. doi:10.1021/la501791q CrossRef Vogl US, Das PK, Weber AZ, Winter M, Kostecki R, Lux SF (2014) Mechanism of interactions between CMC binder and si single crystal facets. Langmuir 30(34):10299–10307. doi:10.​1021/​la501791q CrossRef
25.
go back to reference Erk C, Brezesinski T, Sommer H, Schneider R, Janek J (2013) Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl Mater Interfaces 5(15):7299–7307. doi:10.1021/am401642c CrossRef Erk C, Brezesinski T, Sommer H, Schneider R, Janek J (2013) Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl Mater Interfaces 5(15):7299–7307. doi:10.​1021/​am401642c CrossRef
28.
go back to reference Yim C-H, Courtel FM, Abu-Lebdeh Y (2013) A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. J Mater Chem A 1(28):8234–8243. doi:10.1039/C3TA10883J CrossRef Yim C-H, Courtel FM, Abu-Lebdeh Y (2013) A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. J Mater Chem A 1(28):8234–8243. doi:10.​1039/​C3TA10883J CrossRef
30.
go back to reference Wilkes BN, Brown ZL, Krause LJ, Triemert M, Obrovac MN (2016) The electrochemical behavior of polyimide binders in Li and Na cells. J Electrochem Soc 163(3):A364–A372. doi:10.1149/2.0061603jes CrossRef Wilkes BN, Brown ZL, Krause LJ, Triemert M, Obrovac MN (2016) The electrochemical behavior of polyimide binders in Li and Na cells. J Electrochem Soc 163(3):A364–A372. doi:10.​1149/​2.​0061603jes CrossRef
31.
go back to reference Xu Y-K, Zhan M-S, Wang K (2004) Structure and properties of polyimide films during a far-infrared-induced imidization process. J Polym Sci Part B Polym Phys 42(13):2490–2501. doi:10.1002/polb.20124 CrossRef Xu Y-K, Zhan M-S, Wang K (2004) Structure and properties of polyimide films during a far-infrared-induced imidization process. J Polym Sci Part B Polym Phys 42(13):2490–2501. doi:10.​1002/​polb.​20124 CrossRef
34.
36.
go back to reference Oyaizu K, Hatemata A, Choi W, Nishide H (2010) Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J Mater Chem 20(26):5404–5410. doi:10.1039/C0JM00042F CrossRef Oyaizu K, Hatemata A, Choi W, Nishide H (2010) Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J Mater Chem 20(26):5404–5410. doi:10.​1039/​C0JM00042F CrossRef
37.
go back to reference Wu H, Shevlin SA, Meng Q, Guo W, Meng Y, Lu K, Wei Z, Guo Z (2014) Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv Mater 26(20):3338–3343. doi:10.1002/adma.201305452 CrossRef Wu H, Shevlin SA, Meng Q, Guo W, Meng Y, Lu K, Wei Z, Guo Z (2014) Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv Mater 26(20):3338–3343. doi:10.​1002/​adma.​201305452 CrossRef
38.
go back to reference Li Q, Yang X, Chen W, Yi C, Xu Z (2008) Preparation of poly(amic acid) and polyimide via microwave-assisted polycondensation of aromatic dianhydrides and diamines. Macromol Symp 261(1):148–156. doi:10.1002/masy.200850120 CrossRef Li Q, Yang X, Chen W, Yi C, Xu Z (2008) Preparation of poly(amic acid) and polyimide via microwave-assisted polycondensation of aromatic dianhydrides and diamines. Macromol Symp 261(1):148–156. doi:10.​1002/​masy.​200850120 CrossRef
39.
go back to reference Li WS, Shen ZX, Zheng JZ, Tang SH (1998) FT-IR study of the imidization process of photosensitive polyimide PMDA/ODA. Appl Spectrosc 52(7):985–989CrossRef Li WS, Shen ZX, Zheng JZ, Tang SH (1998) FT-IR study of the imidization process of photosensitive polyimide PMDA/ODA. Appl Spectrosc 52(7):985–989CrossRef
40.
go back to reference Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 8(2):120–125CrossRef Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 8(2):120–125CrossRef
43.
go back to reference Wu M, Xiao X, Vukmirovic N, Xun S, Das PK, Song X, Olalde-Velasco P, Wang D, Weber AZ, Wang L-W, Battaglia VS, Yang W, Liu G (2013) Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc 135(32):12048–12056. doi:10.1021/ja4054465 CrossRef Wu M, Xiao X, Vukmirovic N, Xun S, Das PK, Song X, Olalde-Velasco P, Wang D, Weber AZ, Wang L-W, Battaglia VS, Yang W, Liu G (2013) Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc 135(32):12048–12056. doi:10.​1021/​ja4054465 CrossRef
44.
go back to reference Luo C, Huang R, Kevorkyants R, Pavanello M, He H, Wang C (2014) Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett 14(3):1596–1602. doi:10.1021/nl500026j CrossRef Luo C, Huang R, Kevorkyants R, Pavanello M, He H, Wang C (2014) Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett 14(3):1596–1602. doi:10.​1021/​nl500026j CrossRef
45.
go back to reference Lee HH, Park Y, Shin K-H, Lee KT, Hong SY (2014) Abnormal excess capacity of conjugated dicarboxylates in lithium-ion batteries. ACS Appl Mater Interfaces 6(21):19118–19126. doi:10.1021/am505090p CrossRef Lee HH, Park Y, Shin K-H, Lee KT, Hong SY (2014) Abnormal excess capacity of conjugated dicarboxylates in lithium-ion batteries. ACS Appl Mater Interfaces 6(21):19118–19126. doi:10.​1021/​am505090p CrossRef
46.
go back to reference Lee HH, Park Y, Kim SH, Yeon S-H, Kwak SK, Lee KT, Hong SY (2015) Mechanistic studies of transition metal-terephthalate coordination complexes upon electrochemical lithiation and delithiation. Adv Funct Mater 25(30):4859–4866. doi:10.1002/adfm.201501436 CrossRef Lee HH, Park Y, Kim SH, Yeon S-H, Kwak SK, Lee KT, Hong SY (2015) Mechanistic studies of transition metal-terephthalate coordination complexes upon electrochemical lithiation and delithiation. Adv Funct Mater 25(30):4859–4866. doi:10.​1002/​adfm.​201501436 CrossRef
47.
48.
go back to reference Hatchard TD, Bissonnette P, Obrovac MN (2016) Phenolic resin as an inexpensive high performance binder for li-ion battery alloy negative electrodes. J Electrochem Soc 163(9):A2035–A2039. doi:10.1149/2.1121609jes CrossRef Hatchard TD, Bissonnette P, Obrovac MN (2016) Phenolic resin as an inexpensive high performance binder for li-ion battery alloy negative electrodes. J Electrochem Soc 163(9):A2035–A2039. doi:10.​1149/​2.​1121609jes CrossRef
50.
go back to reference Xun S, Song X, Battaglia V, Liu G (2013) Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery. J Electrochem Soc 160(6):A849–A855. doi:10.1149/2.087306jes CrossRef Xun S, Song X, Battaglia V, Liu G (2013) Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery. J Electrochem Soc 160(6):A849–A855. doi:10.​1149/​2.​087306jes CrossRef
Metadata
Title
Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes
Authors
Taeho Yoon
Navid Chapman
Cao Cuong Nguyen
Brett L. Lucht
Publication date
29-09-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0442-2

Other articles of this Issue 7/2017

Journal of Materials Science 7/2017 Go to the issue

Premium Partners