Skip to main content
Top

2013 | OriginalPaper | Chapter

6. Electrochemistry of Adhesion and Spreading of Lipid Vesicles on Electrodes

Authors : Victor Agmo Hernández, Uwe Lendeckel, Fritz Scholz

Published in: Applications of Electrochemistry in Medicine

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biological membranes have developed to separate different compartments of organisms and cells. There is a large number of rather different functions which membranes have to fulfil: (1) they control the material and energy fluxes of metabolic processes, (2) they provide a wrapping protecting the compartments from chemical and physical attacks of the environment, (3) they provide interfaces at which specific biochemical machineries can operate (e.g., membrane bound enzymes), (4) they are equipped for signal transduction, (5) they possess the necessary stability and flexibility to allow cell division, and endo- and exocytosis as well as migration, (6) they present anchoring structures that enable cell-to-cell and cell-to-matrix physical interactions and intercellular communication. These are certainly not all functions of membranes as new functionalities are continuously reported. Since the biological membranes separate essentially aqueous solutions, such separating borders—if they should possess a reasonable stability and also flexibility combined with selective permeability—have to be built up of hydrophobic molecules exposing to both sides a similar interface. It was one of the most crucial and most lucky circumstances for the development and existence of life that certain amphiphilic molecules are able to assemble in bilayer structures (membranes), which—on one side—possess a rather high physical and chemical stability, and—on the other side—are able to incorporate foreign molecules for modifying both the physical properties as well as the permeability of the membranes for defined chemical species. The importance of the chemical function of membranes and all its constituents, e.g., ion channels, pore peptides, transport peptides, etc., is generally accepted. The fluid-mosaic model proposed by Singer and Nicolson [1] is still the basis to understand the biological, chemical, and physical properties of biological membranes. The importance of the purely mechanical properties of membranes came much later into the focus of research. The reasons are probably the dominance of biochemical thinking and biochemical models among biologists and medical researchers, as well as a certain lack of appropriate methods to probe mechanical properties of membranes. The last decades have changed that situation due to the development of techniques like the Atomic Force Microscopy, Fluorescence Microscopy, Micropipette Aspiration, Raman Microspectroscopy, advanced Calorimetry, etc. This chapter is aimed at elucidating how the properties of membranes can be investigated by studying the interaction of vesicles with a very hydrophobic surface, i.e., with the surface of a mercury electrode. This interaction is unique as it results in a complete disintegration of the bilayer membrane of the vesicles and the formation of an island of adsorbed lipid molecules, i.e., a monolayer island. This process can be followed by current-time measurements (chronoamperometry), which allow studying the complete disintegration process in all its details: the different steps of that disintegration can be resolved on the time scale and the activation parameters can be determined. Most interestingly, the kinetics of vesicle disintegration on mercury share important features with the process of vesicle fusion and, thus, sheds light also on mechanisms of endocytosis and exocytosis. Most importantly, not only artificial vesicles (liposomes) can be studied with this approach, but also reconstituted plasma membrane vesicles and even intact mitochondria. Hence, one can expect that the method may provide in future studies also information on the membrane properties of various other vesicles, including exosomes, and may allow investigating various aspects of drug action in relation to membrane properties (transmembrane transport, tissue targeting, bioavailability, etc.), and also the impact of pathophysiological conditions (e.g., oxidative modification) on membrane properties, on a hitherto not or only hardly accessible level.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
 Whether smooth, clean gold is hydrophilic or hydrophobic is a matter of ­discussion since the 1930s. Arguments have been presented supporting both hypotheses. However, for the purposes of this discussion, it has been clearly demonstrated in the cited references (among others), that the interaction of liposomes with atomically smooth gold {111} can only be understood if the gold substrate is considered hydrophobic.
 
Literature
1.
go back to reference Singer SJ, Nicolson GL. Fluid mosaic model of structure of cell-membranes. Science. 1972;175:720–31. Singer SJ, Nicolson GL. Fluid mosaic model of structure of cell-membranes. Science. 1972;175:720–31.
2.
go back to reference Tanford C. The hydrophobic effect: formation of micelles and biological membranes. New York: Wiley; 1980. Tanford C. The hydrophobic effect: formation of micelles and biological membranes. New York: Wiley; 1980.
3.
go back to reference Hunter CA. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed. 2004;43:5310–24. Hunter CA. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed. 2004;43:5310–24.
4.
go back to reference Gill SJ, Wadso I. Equation of state describing hydrophobic interactions. Proc Natl Acad Sci USA. 1976;73:2955–8. Gill SJ, Wadso I. Equation of state describing hydrophobic interactions. Proc Natl Acad Sci USA. 1976;73:2955–8.
5.
go back to reference Dimitrov DS, Jain RK. Membrane stability. Biochim Biophys Acta. 1984;779:437–68. Dimitrov DS, Jain RK. Membrane stability. Biochim Biophys Acta. 1984;779:437–68.
6.
go back to reference Espinosa G, Lopez-Montero I, Monroy F, Langevin D. Shear rheology of lipid monolayers and insights on membrane fluidity. Proc Natl Acad Sci USA. 2011;108:6008–13. Espinosa G, Lopez-Montero I, Monroy F, Langevin D. Shear rheology of lipid monolayers and insights on membrane fluidity. Proc Natl Acad Sci USA. 2011;108:6008–13.
7.
go back to reference Goldstein DB. The effects of drugs on membrane fluidity. Annu Rev Pharmacol. 1984;24:43–64. Goldstein DB. The effects of drugs on membrane fluidity. Annu Rev Pharmacol. 1984;24:43–64.
8.
go back to reference Kuhry JG, Duportail G, Bronner C, Laustriat G. Plasma-membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. Biochim Biophys Acta. 1985;845:60–7. Kuhry JG, Duportail G, Bronner C, Laustriat G. Plasma-membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. Biochim Biophys Acta. 1985;845:60–7.
9.
go back to reference Kubina M, Lanza F, Cazenave JP, Laustriat G, Kuhry JG. Parallel investigation of exocytosis kinetics and membrane fluidity changes in human-platelets with the fluorescent-probe, trimethylammonio-diphenylhexatriene. Biochim Biophys Acta. 1987;901:138–46. Kubina M, Lanza F, Cazenave JP, Laustriat G, Kuhry JG. Parallel investigation of exocytosis kinetics and membrane fluidity changes in human-platelets with the fluorescent-probe, trimethylammonio-diphenylhexatriene. Biochim Biophys Acta. 1987;901:138–46.
10.
go back to reference Feijge MAH, Heemskerk JWM, Hornstra G. Membrane fluidity of nonactivated and activated human blood-platelets. Biochim Biophys Acta. 1990;1025:173–9. Feijge MAH, Heemskerk JWM, Hornstra G. Membrane fluidity of nonactivated and activated human blood-platelets. Biochim Biophys Acta. 1990;1025:173–9.
11.
go back to reference Fajardo VA, McMeekin L, LeBlanc PJ. Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index. J Membr Biol. 2011;244:97–103. Fajardo VA, McMeekin L, LeBlanc PJ. Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index. J Membr Biol. 2011;244:97–103.
12.
go back to reference Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. In: Harris JR, editor. Cholesterol binding and cholesterol transport proteins: structure and function in health and disease. New York: Springer; 2010. Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. In: Harris JR, editor. Cholesterol binding and cholesterol transport proteins: structure and function in health and disease. New York: Springer; 2010.
13.
go back to reference Hermes M, Scholz F, Hardtner C, Walther R, Schild L, Wolke C, et al. Electrochemical signals of mitochondria: a new probe of their membrane properties. Angew Chem Int Ed. 2011;50:6872–5. Hermes M, Scholz F, Hardtner C, Walther R, Schild L, Wolke C, et al. Electrochemical signals of mitochondria: a new probe of their membrane properties. Angew Chem Int Ed. 2011;50:6872–5.
14.
go back to reference Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, et al. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta. 2010;1797:1217–24. Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, et al. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta. 2010;1797:1217–24.
15.
go back to reference Brian AA, McConnell HM. Allogeneic stimulation of cyto-toxic t-cells by supported planar membranes. Proc Natl Acad Sci USA. 1984;81:6159–63. Brian AA, McConnell HM. Allogeneic stimulation of cyto-toxic t-cells by supported planar membranes. Proc Natl Acad Sci USA. 1984;81:6159–63.
16.
go back to reference Sackmann E. Supported membranes: scientific and practical applications. Science. 1996;271:43–8. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996;271:43–8.
17.
go back to reference Stauffer V, Stoodley R, Agak JO, Bizzotto D. Adsorption of DOPC onto Hg from the G vertical bar S interface and from a liposomal suspension. J Electroanal Chem. 2001;516:73–82. Stauffer V, Stoodley R, Agak JO, Bizzotto D. Adsorption of DOPC onto Hg from the G vertical bar S interface and from a liposomal suspension. J Electroanal Chem. 2001;516:73–82.
18.
go back to reference Richter RP, Bérat R, Brisson AR. Formation of solid-supported lipid bilayers: an integrated view. Langmuir. 2006;22:3497–505. Richter RP, Bérat R, Brisson AR. Formation of solid-supported lipid bilayers: an integrated view. Langmuir. 2006;22:3497–505.
19.
go back to reference Keller CA, Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J. 1998;75:1397–402. Keller CA, Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J. 1998;75:1397–402.
20.
go back to reference Lüthgens E, Herrig A, Kastl K, Steinem C, Reiss B, Wegener J, et al. Adhesion of liposomes: a quartz crystal microbalance study. Meas Sci Technol. 2003;14:1865–75. Lüthgens E, Herrig A, Kastl K, Steinem C, Reiss B, Wegener J, et al. Adhesion of liposomes: a quartz crystal microbalance study. Meas Sci Technol. 2003;14:1865–75.
21.
go back to reference Reiss B, Janshoff A, Steinem C, Seebach J, Wegener J. Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study. Langmuir. 2003;19:1816–23. Reiss B, Janshoff A, Steinem C, Seebach J, Wegener J. Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study. Langmuir. 2003;19:1816–23.
22.
go back to reference Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, et al. Simultaneous frequency and dissipation factor qcm measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–46. Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, et al. Simultaneous frequency and dissipation factor qcm measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–46.
23.
go back to reference Keller CA, Glasmastar K, Zhdanov VP, Kasemo B. Formation of supported membranes from vesicles. Phys Rev Lett. 2000;84:5443–6. Keller CA, Glasmastar K, Zhdanov VP, Kasemo B. Formation of supported membranes from vesicles. Phys Rev Lett. 2000;84:5443–6.
24.
go back to reference Jass J, Tjärnhage T, Puu G. From liposomes to supported, planar bilayer structures onn hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys J. 2000;79:3153–63. Jass J, Tjärnhage T, Puu G. From liposomes to supported, planar bilayer structures onn hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys J. 2000;79:3153–63.
25.
go back to reference Jenkins ATA, Bushby RJ, Evans SD, Knoll W, Offenhäusser A, Ogier SO. Lipid vesicle fusion on μCP patterned self-assembled monolayers: effect of pattern geometry on bilayer formation. Langmuir. 2002;18:3176–80. Jenkins ATA, Bushby RJ, Evans SD, Knoll W, Offenhäusser A, Ogier SO. Lipid vesicle fusion on μCP patterned self-assembled monolayers: effect of pattern geometry on bilayer formation. Langmuir. 2002;18:3176–80.
26.
go back to reference Liang XM, Mao GZ, Ng KYS. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53–62. Liang XM, Mao GZ, Ng KYS. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53–62.
27.
go back to reference Liang XM, Mao GZ, Ng KYS. Probing small unilamellar eggPC vesicles on mica surface by atomic force microscopy. Colloids Surf B. 2004;34:41–51. Liang XM, Mao GZ, Ng KYS. Probing small unilamellar eggPC vesicles on mica surface by atomic force microscopy. Colloids Surf B. 2004;34:41–51.
28.
go back to reference Tero R, Watanabe H, Urisu T. Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. Phys Chem Chem Phys. 2006;8:3885–94. Tero R, Watanabe H, Urisu T. Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. Phys Chem Chem Phys. 2006;8:3885–94.
29.
go back to reference Teschke O, de Souza EF. Liposome structure imaging by atomic force microscopy: verification of improved liposome stability during adsorption of multiple aggregated vesicles. Langmuir. 2002;18:6513–20. Teschke O, de Souza EF. Liposome structure imaging by atomic force microscopy: verification of improved liposome stability during adsorption of multiple aggregated vesicles. Langmuir. 2002;18:6513–20.
30.
go back to reference Winger TM, Chaikof EL. Synthesis and characterization of supported phospholipid monolayers: a correlative investigation by radiochemical titration and atomic force microscopy. Langmuir. 1998;14:4148–55. Winger TM, Chaikof EL. Synthesis and characterization of supported phospholipid monolayers: a correlative investigation by radiochemical titration and atomic force microscopy. Langmuir. 1998;14:4148–55.
31.
go back to reference Kunneke S, Kruger D, Janshoff A. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured by scanning force microscopy. Biophys J. 2004;86:1545–53. Kunneke S, Kruger D, Janshoff A. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured by scanning force microscopy. Biophys J. 2004;86:1545–53.
32.
go back to reference Wong JY, Park CK, Seitz M, Israelachvili J. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys J. 1999;77:1458–68. Wong JY, Park CK, Seitz M, Israelachvili J. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys J. 1999;77:1458–68.
33.
go back to reference Nissen J, Gritsch S, Wiegand G, Radler JO. Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur Phys J B. 1999;10:335–44. Nissen J, Gritsch S, Wiegand G, Radler JO. Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur Phys J B. 1999;10:335–44.
34.
go back to reference Yuan J, Parker ER, Hirst LS. Cationic lipid absorption on titanium: a counterion-mediated bilayer-to-lipid-tubule-network transition. Langmuir. 2007;23:7462–5. Yuan J, Parker ER, Hirst LS. Cationic lipid absorption on titanium: a counterion-mediated bilayer-to-lipid-tubule-network transition. Langmuir. 2007;23:7462–5.
35.
go back to reference Liu KW, Biswal SL. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces. Anal Chem. 2010;82:7527–32. Liu KW, Biswal SL. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces. Anal Chem. 2010;82:7527–32.
36.
go back to reference Hubbard JB, Silin V, Plant AL. Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes. Biophys Chem. 1998;75:163–76. Hubbard JB, Silin V, Plant AL. Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes. Biophys Chem. 1998;75:163–76.
37.
go back to reference Silin VI, Wieder H, Woodward JT, Valincius G, Offenhausser A, Plant AL. The role of surface free energy on the formation of hybrid bilayer membranes. J Am Chem Soc. 2002;124:14676–83. Silin VI, Wieder H, Woodward JT, Valincius G, Offenhausser A, Plant AL. The role of surface free energy on the formation of hybrid bilayer membranes. J Am Chem Soc. 2002;124:14676–83.
38.
go back to reference Tawa K, Morigaki K. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophys J. 2005;89:2750–8. Tawa K, Morigaki K. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophys J. 2005;89:2750–8.
39.
go back to reference Agmo Hernández V, Scholz F. The electrochemistry of liposomes. Isr J Chem. 2008;48:169–84. Agmo Hernández V, Scholz F. The electrochemistry of liposomes. Isr J Chem. 2008;48:169–84.
40.
go back to reference Radler J, Strey H, Sackmann E. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir. 1995;11:4539–48. Radler J, Strey H, Sackmann E. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir. 1995;11:4539–48.
41.
go back to reference Williams LM, Evans SD, Flynn TM, Marsh A, Knowles PF, Bushby RJ, et al. Kinetics of the unrolling of small unilamellar phospholipid vesicles onto self-assembled monolayers. Langmuir. 1997;13:751–7. Williams LM, Evans SD, Flynn TM, Marsh A, Knowles PF, Bushby RJ, et al. Kinetics of the unrolling of small unilamellar phospholipid vesicles onto self-assembled monolayers. Langmuir. 1997;13:751–7.
42.
go back to reference Seifert U, Lipowsky R. Adhesion of vesicles. Phys Rev A. 1990;42:4768–71. Seifert U, Lipowsky R. Adhesion of vesicles. Phys Rev A. 1990;42:4768–71.
43.
go back to reference Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep. 2006;61:429–44. Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep. 2006;61:429–44.
44.
go back to reference Johnson JM, Ha T, Chu S, Boxer SG. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J. 2002;83:3371–9. Johnson JM, Ha T, Chu S, Boxer SG. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J. 2002;83:3371–9.
45.
go back to reference Lipkowski J. Building biomimetic membrane at a gold electrode surface. Phys Chem Chem Phys. 2010;12:13874–87. Lipkowski J. Building biomimetic membrane at a gold electrode surface. Phys Chem Chem Phys. 2010;12:13874–87.
46.
go back to reference Li M, Chen M, Sheepwash E, Brosseau CL, Li H, Pettinger B, et al. AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques. Langmuir. 2008;24:10313–23. Li M, Chen M, Sheepwash E, Brosseau CL, Li H, Pettinger B, et al. AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques. Langmuir. 2008;24:10313–23.
47.
go back to reference Agmo Hernández V, Scholz F. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. Langmuir. 2006;22:10723–31. Agmo Hernández V, Scholz F. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. Langmuir. 2006;22:10723–31.
48.
go back to reference Agmo Hernández V, Scholz F. The lipid composition determines the kinetics of adhesion and spreading of liposomes on mercury electrodes. Bioelectrochemistry. 2008;74:149–56. Agmo Hernández V, Scholz F. The lipid composition determines the kinetics of adhesion and spreading of liposomes on mercury electrodes. Bioelectrochemistry. 2008;74:149–56.
49.
go back to reference Sek S, Xu S, Chen M, Szymanski G, Lipkowski J. STM studies of fusion of cholesterol suspensions and mixed 1,2-dimyritoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol vesicles onto a Au(111) electrode surface. J Am Chem Soc. 2008;130:5736–43. Sek S, Xu S, Chen M, Szymanski G, Lipkowski J. STM studies of fusion of cholesterol suspensions and mixed 1,2-dimyritoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol vesicles onto a Au(111) electrode surface. J Am Chem Soc. 2008;130:5736–43.
50.
go back to reference Hellberg D, Scholz F, Schubert F, Lovric M, Omanovic D, Agmo Hernández V, et al. Kinetics of liposome adhesion on a mercury electrode. J Phys Chem B. 2005;109:14715–26. Hellberg D, Scholz F, Schubert F, Lovric M, Omanovic D, Agmo Hernández V, et al. Kinetics of liposome adhesion on a mercury electrode. J Phys Chem B. 2005;109:14715–26.
51.
go back to reference Agmo Hernández V, Milchev A, Scholz F. Study of the temporal distribution of the adhesion-spreading events of liposomes on a mercury electrode. J Solid State Electr. 2009;13:1111–4. Agmo Hernández V, Milchev A, Scholz F. Study of the temporal distribution of the adhesion-spreading events of liposomes on a mercury electrode. J Solid State Electr. 2009;13:1111–4.
52.
go back to reference Agmo Hernández V, Hermes M, Milchev A, Scholz F. The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electr. 2009;13:639–49. Agmo Hernández V, Hermes M, Milchev A, Scholz F. The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electr. 2009;13:639–49.
53.
go back to reference Agmo Hernández V, Karlsson G, Edwards K. Intrinsic heterogeneity in liposome suspensions caused by the dynamic spontaneous formation of hydrophobic active sites in lipid membranes. Langmuir. 2011;27:4873–83. Agmo Hernández V, Karlsson G, Edwards K. Intrinsic heterogeneity in liposome suspensions caused by the dynamic spontaneous formation of hydrophobic active sites in lipid membranes. Langmuir. 2011;27:4873–83.
54.
go back to reference Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, et al. Electric field-driven transformations of a supported model biological membrane—an electrochemical and neutron reflectivity study. Biophys J. 2004;86:1763–76. Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, et al. Electric field-driven transformations of a supported model biological membrane—an electrochemical and neutron reflectivity study. Biophys J. 2004;86:1763–76.
55.
go back to reference Whitehouse C, O’Flanagan R, Lindholm-Sethson B, Movaghar B, Nelson A. Application of electrochemical impedance spectroscopy to the study of dioleoyl phosphatidylcholine monolayers on mercury. Langmuir. 2004;20:136–44. Whitehouse C, O’Flanagan R, Lindholm-Sethson B, Movaghar B, Nelson A. Application of electrochemical impedance spectroscopy to the study of dioleoyl phosphatidylcholine monolayers on mercury. Langmuir. 2004;20:136–44.
56.
go back to reference Nelson A. Electrochemistry of mercury supported phospholipid monolayers and bilayers. Curr Opin Colloid Interface Sci. 2010;15:455–66. Nelson A. Electrochemistry of mercury supported phospholipid monolayers and bilayers. Curr Opin Colloid Interface Sci. 2010;15:455–66.
57.
go back to reference Valincius G, Meškauskas T, Ivanauskas F. Electrochemical impedance spectroscopy of tethered bilayer membranes. Langmuir. 2011;28:977–90. Valincius G, Meškauskas T, Ivanauskas F. Electrochemical impedance spectroscopy of tethered bilayer membranes. Langmuir. 2011;28:977–90.
58.
go back to reference Jeuken LJC, Connell SD, Nurnabi M, O’Reilly J, Henderson PJF, Evans SD, et al. Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract. Langmuir. 2005;21:1481–8. Jeuken LJC, Connell SD, Nurnabi M, O’Reilly J, Henderson PJF, Evans SD, et al. Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract. Langmuir. 2005;21:1481–8.
59.
go back to reference Jeuken LJC. AFM study on the electric-field effects on supported bilayer lipid membranes. Biophys J. 2008;94:4711–7. Jeuken LJC. AFM study on the electric-field effects on supported bilayer lipid membranes. Biophys J. 2008;94:4711–7.
60.
go back to reference Du L, Liu X, Huang W, Wang E. A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochim Acta. 2006;51:5754–60. Du L, Liu X, Huang W, Wang E. A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochim Acta. 2006;51:5754–60.
61.
go back to reference Vakurov A, Brydson R, Nelson A. Electrochemical modeling of the silica nanoparticle–biomembrane interaction. Langmuir. 2011;28:1246–55. Vakurov A, Brydson R, Nelson A. Electrochemical modeling of the silica nanoparticle–biomembrane interaction. Langmuir. 2011;28:1246–55.
62.
go back to reference Shirai O, Yamana H, Ohnuki T, Yoshida Y, Kihara S. Ion transport across a bilayer lipid membrane facilitated by valinomycin. J Electroanal Chem. 2004;570:219–26. Shirai O, Yamana H, Ohnuki T, Yoshida Y, Kihara S. Ion transport across a bilayer lipid membrane facilitated by valinomycin. J Electroanal Chem. 2004;570:219–26.
63.
go back to reference Shirai O, Yoshida Y, Kihara S, Ohnuki T, Uehara A, Yamana H. Ion transport across a bilayer lipid membrane facilitated by gramicidin A—effect of counter anions on the cation transport. J Electroanal Chem. 2006;595:53–9. Shirai O, Yoshida Y, Kihara S, Ohnuki T, Uehara A, Yamana H. Ion transport across a bilayer lipid membrane facilitated by gramicidin A—effect of counter anions on the cation transport. J Electroanal Chem. 2006;595:53–9.
64.
go back to reference Lundgren A, Hedlund J, Andersson O, Brändén M, Kunze A, Elwing H, et al. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport. Anal Chem. 2011;83:7800–6. Lundgren A, Hedlund J, Andersson O, Brändén M, Kunze A, Elwing H, et al. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport. Anal Chem. 2011;83:7800–6.
65.
go back to reference Laredo T, Dutcher JR, Lipkowski J. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface. Langmuir. 2011;27:10072–87. Laredo T, Dutcher JR, Lipkowski J. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface. Langmuir. 2011;27:10072–87.
66.
go back to reference Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E. Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophys J. 1998;74:2100–13. Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E. Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophys J. 1998;74:2100–13.
67.
go back to reference Neher E, Marty A. Discrete changes of cell-membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA. 1982;79:6712–6. Neher E, Marty A. Discrete changes of cell-membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA. 1982;79:6712–6.
68.
go back to reference Neher E. Ion channels for communication between and within cells. Science. 1992;256:498–502. Neher E. Ion channels for communication between and within cells. Science. 1992;256:498–502.
69.
go back to reference Dernick G, de Toledo GA, Lindau M. Exocytosis of single chromaffin granules in cell-free inside-out membrane patches. Nat Cell Biol. 2003;5:358–62. Dernick G, de Toledo GA, Lindau M. Exocytosis of single chromaffin granules in cell-free inside-out membrane patches. Nat Cell Biol. 2003;5:358–62.
70.
go back to reference Sakmann B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science. 1992;256:503–12. Sakmann B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science. 1992;256:503–12.
71.
go back to reference Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, et al. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Biophys J. 2005;88:4411–20. Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, et al. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Biophys J. 2005;88:4411–20.
72.
go back to reference Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, et al. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci USA. 2005;102:13879–84. Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, et al. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci USA. 2005;102:13879–84.
73.
go back to reference Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM. Secretion of catecholamines from individual adrenal-medullary chromaffin cells. J Neurochem. 1991;56:1855–63. Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM. Secretion of catecholamines from individual adrenal-medullary chromaffin cells. J Neurochem. 1991;56:1855–63.
74.
go back to reference Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA. 1991;88:10754–8. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA. 1991;88:10754–8.
75.
go back to reference Chow RH, Vonruden L, Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992;356:60–3. Chow RH, Vonruden L, Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992;356:60–3.
76.
go back to reference Marchal D, Boireau W, Laval JM, Moiroux J, Bourdillon C. An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastiquinones incorporated in supported phospholipid layers. Biophys J. 1997;72:2679–87. Marchal D, Boireau W, Laval JM, Moiroux J, Bourdillon C. An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastiquinones incorporated in supported phospholipid layers. Biophys J. 1997;72:2679–87.
77.
go back to reference Gordillo GJ, Schiffrin DJ. The electrochemistry of ubiquinone-10 in a phospholipid model membrane. Faraday Discuss. 2000;116:89–107. Gordillo GJ, Schiffrin DJ. The electrochemistry of ubiquinone-10 in a phospholipid model membrane. Faraday Discuss. 2000;116:89–107.
78.
go back to reference Laval JM, Majda M. Electrochemical investigations of the structure and electron-transfer properties of phospholipid-bilayers incorporating ubiquinone. Thin Solid Films. 1994;244:836–40. Laval JM, Majda M. Electrochemical investigations of the structure and electron-transfer properties of phospholipid-bilayers incorporating ubiquinone. Thin Solid Films. 1994;244:836–40.
79.
go back to reference Moncelli MR, Herrero R, Becucci L, Guidelli R. Kinetics of electron and proton transfer to ubiquinone-10 and from ubiquinol-10 in a self-assembled phophatidylcholine monolayer. Biochim Biophys Acta. 1998;1364:373–84. Moncelli MR, Herrero R, Becucci L, Guidelli R. Kinetics of electron and proton transfer to ubiquinone-10 and from ubiquinol-10 in a self-assembled phophatidylcholine monolayer. Biochim Biophys Acta. 1998;1364:373–84.
80.
go back to reference Mårtensson C, Agmo Hernández V. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochemistry. 2012;88:171–80. Mårtensson C, Agmo Hernández V. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochemistry. 2012;88:171–80.
81.
go back to reference Largueze JB, El Kirat K, Morandat S. Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf B. 2010;79:33–40. Largueze JB, El Kirat K, Morandat S. Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf B. 2010;79:33–40.
82.
go back to reference Yao WW, Lau C, Hui YL, Poh HL, Webster RD. Electrode-supported biomembrane for examining electron-transfer and ion-transfer reactions of encapsulated low molecular weight biological molecules. J Phys Chem C. 2011;115:2100–13. Yao WW, Lau C, Hui YL, Poh HL, Webster RD. Electrode-supported biomembrane for examining electron-transfer and ion-transfer reactions of encapsulated low molecular weight biological molecules. J Phys Chem C. 2011;115:2100–13.
83.
go back to reference Hosseini A, Collman JP, Devadoss A, Williams GY, Barile CJ, Eberspacher TA. Ferrocene embedded in an electrode-supported hybrid lipid bilayer membrane: a model system for electrocatalysis in a biomimetic environment. Langmuir. 2010;26:17674–8. Hosseini A, Collman JP, Devadoss A, Williams GY, Barile CJ, Eberspacher TA. Ferrocene embedded in an electrode-supported hybrid lipid bilayer membrane: a model system for electrocatalysis in a biomimetic environment. Langmuir. 2010;26:17674–8.
84.
go back to reference Correia-Ledo D, Arnold AA, Mauzeroll J. Synthesis of redox active ferrocene-modified phospholipids by transphosphatidylation reaction and chronoamperometry study of the corresponding redox sensitive liposome. J Am Chem Soc. 2010;132:15120–3. Correia-Ledo D, Arnold AA, Mauzeroll J. Synthesis of redox active ferrocene-modified phospholipids by transphosphatidylation reaction and chronoamperometry study of the corresponding redox sensitive liposome. J Am Chem Soc. 2010;132:15120–3.
85.
go back to reference Lingler S, Rubinstein I, Knoll W, Offenhäusser A. Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolazers on gold. Langmuir. 1997;13:7085–91. Lingler S, Rubinstein I, Knoll W, Offenhäusser A. Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolazers on gold. Langmuir. 1997;13:7085–91.
86.
go back to reference Horswell SL, Zamlynny V, Li H, Merrill AR, Lipkowski J. Electrochemical and PM-IRRAS studies of potential controlled transformations of phospholipid layers on Au(111) electrodes. Faraday Discuss. 2002;121:405–22. Horswell SL, Zamlynny V, Li H, Merrill AR, Lipkowski J. Electrochemical and PM-IRRAS studies of potential controlled transformations of phospholipid layers on Au(111) electrodes. Faraday Discuss. 2002;121:405–22.
87.
go back to reference Agmo Hernández V, Scholz F. Reply to the comment on kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. Langmuir. 2007;23:8650. Agmo Hernández V, Scholz F. Reply to the comment on kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. Langmuir. 2007;23:8650.
88.
go back to reference Scholz F, Hellberg D, Harnisch F, Hummel A, Hasse U. Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochem Commun. 2004;6:929–33. Scholz F, Hellberg D, Harnisch F, Hummel A, Hasse U. Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochem Commun. 2004;6:929–33.
89.
go back to reference Ivosevic N, Zutic V. Spreading and detachment of organic droplets at an electrified interface. Langmuir. 1998;14:231–4. Ivosevic N, Zutic V. Spreading and detachment of organic droplets at an electrified interface. Langmuir. 1998;14:231–4.
90.
go back to reference Tsekov R, Kovac S, Zutic V. Attachment of oil droplets and cells on dropping mercury electrode. Langmuir. 1999;15:5649–53. Tsekov R, Kovac S, Zutic V. Attachment of oil droplets and cells on dropping mercury electrode. Langmuir. 1999;15:5649–53.
91.
go back to reference Zutic V, Kovac S, Tomaic J, Svetlicic V. Heterocoalescence between dispersed organic microdroplets and a charged conductive interface. J Electroanal Chem. 1993;349:173–86. Zutic V, Kovac S, Tomaic J, Svetlicic V. Heterocoalescence between dispersed organic microdroplets and a charged conductive interface. J Electroanal Chem. 1993;349:173–86.
92.
go back to reference Banks CE, Rees NV, Compton RG. Sonoelectrochernistry understood via nanosecond voltammetry: Sono-emulsions and the measurement of the potential of zero charge of a solid electrode. J Phys Chem B. 2002;106:5810–3. Banks CE, Rees NV, Compton RG. Sonoelectrochernistry understood via nanosecond voltammetry: Sono-emulsions and the measurement of the potential of zero charge of a solid electrode. J Phys Chem B. 2002;106:5810–3.
93.
go back to reference Kovac S, Svetlicic V, Zutic V. Molecular adsorption vs. cell adhesion at an electrified aqueous interface. Colloids Surf A. 1999;149:481–9. Kovac S, Svetlicic V, Zutic V. Molecular adsorption vs. cell adhesion at an electrified aqueous interface. Colloids Surf A. 1999;149:481–9.
94.
go back to reference Zutic V, Ivosevic N, Svetlicic V, Long RA, Azam F. Film formation by marine bacteria at a model fluid interface. Aquat Microb Ecol. 1999;17:231–8. Zutic V, Ivosevic N, Svetlicic V, Long RA, Azam F. Film formation by marine bacteria at a model fluid interface. Aquat Microb Ecol. 1999;17:231–8.
95.
go back to reference Hellberg D (2002) Untersuchungen von mikroorganismen an elektrodenoberflächen. Diplom, Universität Greifswald, Greifswald Hellberg D (2002) Untersuchungen von mikroorganismen an elektrodenoberflächen. Diplom, Universität Greifswald, Greifswald
96.
go back to reference Agmo Hernández V, Niessen J, Harnisch F, Block S, Greinacher A, Kroemer HK, et al. The adhesion and spreading of thrombocyte vesicles on electrode surfaces. Bioelectrochemistry. 2008;74:210–6. Agmo Hernández V, Niessen J, Harnisch F, Block S, Greinacher A, Kroemer HK, et al. The adhesion and spreading of thrombocyte vesicles on electrode surfaces. Bioelectrochemistry. 2008;74:210–6.
97.
go back to reference Cutress IJ, Rees NV, Zhou Y-G, Compton RG. Nanoparticle-electrode collision processes: investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles. Chem Phys Lett. 2011;514:58–61. Cutress IJ, Rees NV, Zhou Y-G, Compton RG. Nanoparticle-electrode collision processes: investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles. Chem Phys Lett. 2011;514:58–61.
98.
go back to reference Maisonhaute E, White PC, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. J Phys Chem B. 2001;105:12087–91. Maisonhaute E, White PC, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. J Phys Chem B. 2001;105:12087–91.
99.
go back to reference Maisonhaute E, Brookes BA, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles. J Phys Chem B. 2002;106:3166–72. Maisonhaute E, Brookes BA, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles. J Phys Chem B. 2002;106:3166–72.
100.
go back to reference Rees NV, Banks CE, Compton RG. Ultrafast chronoamperometry of acoustically agitated solid particulate suspensions: nonfaradaic and faradaic processes at a polycrystalline gold electrode. J Phys Chem B. 2004;108:18391–4. Rees NV, Banks CE, Compton RG. Ultrafast chronoamperometry of acoustically agitated solid particulate suspensions: nonfaradaic and faradaic processes at a polycrystalline gold electrode. J Phys Chem B. 2004;108:18391–4.
101.
go back to reference Rees NV, Zhou Y-G, Compton RG. The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. Chemphyschem. 2011;12:1645–7. Rees NV, Zhou Y-G, Compton RG. The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. Chemphyschem. 2011;12:1645–7.
102.
go back to reference Rees NV, Zhou Y-G, Compton RG. Making contact: charge transfer during particle-electrode collisions. RSC Advances. 2012;2:379–84. Rees NV, Zhou Y-G, Compton RG. Making contact: charge transfer during particle-electrode collisions. RSC Advances. 2012;2:379–84.
103.
go back to reference Zhou Y-G, Rees NV, Compton RG. Electrode-nanoparticle collisions: the measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chem Phys Lett. 2011;514:291–3. Zhou Y-G, Rees NV, Compton RG. Electrode-nanoparticle collisions: the measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chem Phys Lett. 2011;514:291–3.
104.
go back to reference Zhou Y-G, Rees NV, Compton RG. Nanoparticle-electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution. Chemphyschem. 2011;12:2085–7. Zhou Y-G, Rees NV, Compton RG. Nanoparticle-electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution. Chemphyschem. 2011;12:2085–7.
105.
go back to reference Zhou Y-G, Rees NV, Compton RG. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew Chem Int Ed. 2011;50:4219–21. Zhou Y-G, Rees NV, Compton RG. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew Chem Int Ed. 2011;50:4219–21.
106.
go back to reference Hellberg D, Scholz F, Schauer F, Weitschies W. Bursting and spreading of liposomes on the surface of a static mercury drop electrode. Electrochem Commun. 2002;4:305–9. Hellberg D, Scholz F, Schauer F, Weitschies W. Bursting and spreading of liposomes on the surface of a static mercury drop electrode. Electrochem Commun. 2002;4:305–9.
107.
go back to reference Hellberg D (2006) Elektrochemische charakterisierung von liposomen. Dissertation, Universität Greifswald, Greifswald Hellberg D (2006) Elektrochemische charakterisierung von liposomen. Dissertation, Universität Greifswald, Greifswald
108.
go back to reference Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci USA. 1996;93:11443–7. Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci USA. 1996;93:11443–7.
109.
go back to reference Saff EB, Kuijlaars ABJ. Distributing many points on a sphere. Math Intell. 1997;19:5–11. Saff EB, Kuijlaars ABJ. Distributing many points on a sphere. Math Intell. 1997;19:5–11.
110.
go back to reference Agmo Hernández V (2008) The mechanism of adhesion-spreading of liposomes on a mercury electrode. Dissertation, Greifswald Universität, Greifswald Agmo Hernández V (2008) The mechanism of adhesion-spreading of lipo­somes on a mercury electrode. Dissertation, Greifswald Universität, Greifswald
111.
go back to reference Milchev A. Electrocrystallization: nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem. 2008;44:619–45. Milchev A. Electrocrystallization: nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem. 2008;44:619–45.
112.
go back to reference Milchev A. Electrocrystallization. Fundamentals of nucleation and growth. Boston: Kluwer Academic; 2002. Milchev A. Electrocrystallization. Fundamentals of nucleation and growth. Boston: Kluwer Academic; 2002.
113.
go back to reference Sens P, Safran SA. Pore formation and area exchange in tense membranes. Europhys Lett. 1998;43:95–100. Sens P, Safran SA. Pore formation and area exchange in tense membranes. Europhys Lett. 1998;43:95–100.
114.
go back to reference Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971;10:1111–20. Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971;10:1111–20.
115.
go back to reference Abreu MSC, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of association of a phospholipid derivative with lipid bilayers in liquid-disordered and liquid-ordered phases. Biophys J. 2004;87:353–65. Abreu MSC, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of association of a phospholipid derivative with lipid bilayers in liquid-disordered and liquid-ordered phases. Biophys J. 2004;87:353–65.
116.
go back to reference Rivas L, Luque-Ortega J, Fernández-Reyes M, Andreu D. Membrane-active peptides as anti-infectious agents. J Appl Biomed. 2010;8:159–67. Rivas L, Luque-Ortega J, Fernández-Reyes M, Andreu D. Membrane-active peptides as anti-infectious agents. J Appl Biomed. 2010;8:159–67.
117.
go back to reference Zetterberg MM, Reijmar K, Pränting M, Engström Å, Andersson DI, Edwards K. PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. J Control Release. 2011;156:323–8. Zetterberg MM, Reijmar K, Pränting M, Engström Å, Andersson DI, Edwards K. PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. J Control Release. 2011;156:323–8.
118.
go back to reference Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7. Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.
119.
go back to reference Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21:556–62. Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21:556–62.
120.
go back to reference Nomura F, Nagata M, Inaba T, Hiramatsu H, Hotani H, Takiguchi K. Capabilities of liposomes for topological transformation. Proc Natl Acad Sci USA. 2001;98:2340–5. Nomura F, Nagata M, Inaba T, Hiramatsu H, Hotani H, Takiguchi K. Capabilities of liposomes for topological transformation. Proc Natl Acad Sci USA. 2001;98:2340–5.
121.
go back to reference Vist MR, Davis JH. Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures—H-2 nuclear magnetic-resonance and differential scanning calorimetry. Biochemistry. 1990;29:451–64. Vist MR, Davis JH. Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures—H-2 nuclear magnetic-resonance and differential scanning calorimetry. Biochemistry. 1990;29:451–64.
122.
go back to reference Gaber BP, Peticolas WL. Quantitative interpretation of biomembrane structure by Raman-spectroscopy. Biochim Biophys Acta. 1977;465:260–74. Gaber BP, Peticolas WL. Quantitative interpretation of biomembrane structure by Raman-spectroscopy. Biochim Biophys Acta. 1977;465:260–74.
123.
go back to reference Daly TA, Wang M, Regen SL. The origin of cholesterol’s condensing effect. Langmuir. 2011;27:2159–61. Daly TA, Wang M, Regen SL. The origin of cholesterol’s condensing effect. Langmuir. 2011;27:2159–61.
124.
go back to reference Liu J, Conboy JC. 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J. 2005;89:2522–32. Liu J, Conboy JC. 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J. 2005;89:2522–32.
125.
go back to reference Hermes M, Czesnick C, Stremlau S, Stöhr C, Scholz F. Effect of NO on the adhesion–spreading of DMPC and DOPC liposomes on electrodes, and the partition of NO between an aqueous phase and DMPC liposomes. J Electroanal Chem. 2012;671:33–7. Hermes M, Czesnick C, Stremlau S, Stöhr C, Scholz F. Effect of NO on the adhesion–spreading of DMPC and DOPC liposomes on electrodes, and the partition of NO between an aqueous phase and DMPC liposomes. J Electroanal Chem. 2012;671:33–7.
126.
go back to reference Zander S, Hermes M, Scholz F, Gröning A, Helm CA, Vollmer D, et al. Membrane fluidity of tetramyristoyl cardiolipin (TMCL) liposomes studied by chronoamperometric monitoring of their adhesion and spreading at the surface of a mercury electrode. J Solid State Electr. 2012;16:2391–7. Zander S, Hermes M, Scholz F, Gröning A, Helm CA, Vollmer D, et al. Membrane fluidity of tetramyristoyl cardiolipin (TMCL) liposomes studied by chronoamperometric monitoring of their adhesion and spreading at the surface of a mercury electrode. J Solid State Electr. 2012;16:2391–7.
127.
go back to reference Tsuda K, Kimura K, Nishio I. Leptin improves membrane fluidity of erythrocytes in humans via a nitric oxide-dependent mechanism—an electron paramagnetic resonance investigation. Biochem Biophys Res Commun. 2002;297:672–81. Tsuda K, Kimura K, Nishio I. Leptin improves membrane fluidity of erythrocytes in humans via a nitric oxide-dependent mechanism—an electron paramagnetic resonance investigation. Biochem Biophys Res Commun. 2002;297:672–81.
128.
go back to reference Tsuda K. Association between homocysteine and membrane fluidity of red blood cells in hypertensive and normotensive men. CVD Prev Control. 2009;4:S153. Tsuda K. Association between homocysteine and membrane fluidity of red blood cells in hypertensive and normotensive men. CVD Prev Control. 2009;4:S153.
129.
go back to reference Tsuda K. Benidipine, a long-acting calcium channel blocker, improves membrane fluidity of erythrocytes in essential hypertension. CVD Prev Control. 2009;4:S160. Tsuda K. Benidipine, a long-acting calcium channel blocker, improves membrane fluidity of erythrocytes in essential hypertension. CVD Prev Control. 2009;4:S160.
130.
go back to reference Mouritsen OG, Jorgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994;73:3–25. Mouritsen OG, Jorgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994;73:3–25.
131.
go back to reference Loura LMS, de Almeida RFM, Silva LC, Prieto M. FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta. 2009;1788:209–24. Loura LMS, de Almeida RFM, Silva LC, Prieto M. FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta. 2009;1788:209–24.
132.
go back to reference Niemela PS, Hyvonen MT, Vattulainen I. Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta. 2009;1788:122–35. Niemela PS, Hyvonen MT, Vattulainen I. Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta. 2009;1788:122–35.
133.
go back to reference Somerharju P, Virtanen JA, Cheng KH, Hermansson M. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis. Biochim Biophys Acta. 2009;1788:12–23. Somerharju P, Virtanen JA, Cheng KH, Hermansson M. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis. Biochim Biophys Acta. 2009;1788:12–23.
134.
go back to reference Scott HL. Modeling the lipid component of membranes. Curr Opin Struct Biol. 2002;12:495–502. Scott HL. Modeling the lipid component of membranes. Curr Opin Struct Biol. 2002;12:495–502.
135.
go back to reference Bloom M, Thewalt J. Spectroscopic determination of lipid dynamics in membranes. Chem Phys Lipids. 1994;73:27–38. Bloom M, Thewalt J. Spectroscopic determination of lipid dynamics in membranes. Chem Phys Lipids. 1994;73:27–38.
136.
go back to reference Chiantia S, Ries J, Schwille P. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta. 2009;1788:225–33. Chiantia S, Ries J, Schwille P. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta. 2009;1788:225–33.
137.
go back to reference Day CA, Kenworthy AK. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta. 2009;1788:245–53. Day CA, Kenworthy AK. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta. 2009;1788:245–53.
138.
go back to reference Perez-Rojas JM, Muriel P. Inhibition of mitochondrial respiration by nitric oxide is independent of membrane fluidity modulation or oxidation of sulfhydryl groups. J Appl Toxicol. 2005;25:522–6. Perez-Rojas JM, Muriel P. Inhibition of mitochondrial respiration by nitric oxide is independent of membrane fluidity modulation or oxidation of sulfhydryl groups. J Appl Toxicol. 2005;25:522–6.
139.
go back to reference Mesquita R, Picarra B, Saldanha C, Silva JME. Nitric oxide effects on human erythrocytes structural and functional properties—an in vitro study. Clin Hemorheol Microcirc. 2002;27:137–47. Mesquita R, Picarra B, Saldanha C, Silva JME. Nitric oxide effects on human erythrocytes structural and functional properties—an in vitro study. Clin Hemorheol Microcirc. 2002;27:137–47.
140.
go back to reference Tsyganov I, Maitz MF, Wieser E, Richter E, Reuther H. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surf Coat Tech. 2005;200:1041–4. Tsyganov I, Maitz MF, Wieser E, Richter E, Reuther H. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surf Coat Tech. 2005;200:1041–4.
141.
go back to reference Vasilets VN, Kuznetsov AV, Sevastyanov VI. Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation. High Energ Chem. 2006;40:79–85. Vasilets VN, Kuznetsov AV, Sevastyanov VI. Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation. High Energ Chem. 2006;40:79–85.
142.
go back to reference Taylor RG, Lewis JC. Microfilament reorganization in normal and cytochalasin-b treated adherent thrombocytes. J Supramol Struct Cell Biochem. 1981;16:209–20. Taylor RG, Lewis JC. Microfilament reorganization in normal and cytochalasin-b treated adherent thrombocytes. J Supramol Struct Cell Biochem. 1981;16:209–20.
143.
go back to reference Mikhalovska LI, Santin M, Denyer SP, Lloyd AW, Teer DG, Field S, et al. Fibrinogen adsorption and platelet adhesion to metal and carbon coatings. Thromb Haemost. 2004;92:1032–9. Mikhalovska LI, Santin M, Denyer SP, Lloyd AW, Teer DG, Field S, et al. Fibrinogen adsorption and platelet adhesion to metal and carbon coatings. Thromb Haemost. 2004;92:1032–9.
144.
go back to reference Larsson N, Linder LE, Curelaru I, Buscemi P, Sherman R, Eriksson E. Initial platelet-adhesion and platelet shape on polymer surfaces with different carbon bonding characteristics (an in vitro study of teflon, pellethane and xlon intravenous cannulae). J Mater Sci Mater Med. 1990;1:157–62. Larsson N, Linder LE, Curelaru I, Buscemi P, Sherman R, Eriksson E. Initial platelet-adhesion and platelet shape on polymer surfaces with different carbon bonding characteristics (an in vitro study of teflon, pellethane and xlon intravenous cannulae). J Mater Sci Mater Med. 1990;1:157–62.
145.
go back to reference Enyedi A, Sarkadi B, Foldespapp Z, Monostory S, Gardos G. Demonstration of 2 distinct calcium pumps in human-platelet membrane-vesicles. J Biol Chem. 1986;261:9558–63. Enyedi A, Sarkadi B, Foldespapp Z, Monostory S, Gardos G. Demonstration of 2 distinct calcium pumps in human-platelet membrane-vesicles. J Biol Chem. 1986;261:9558–63.
146.
go back to reference Barber AJ, Jamieson GA. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem. 1970;245:6357–65. Barber AJ, Jamieson GA. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem. 1970;245:6357–65.
147.
go back to reference Slayman CL. Electrical properties of neurospora crassa respiration and intracellular potential. J Gen Physiol. 1965;49:93–116. Slayman CL. Electrical properties of neurospora crassa respiration and intracellular potential. J Gen Physiol. 1965;49:93–116.
148.
go back to reference Katyare SS, Satav JG. Altered kinetic-properties of liver mitochondrial membrane-bound enzyme-activities following paracetamol hepatotoxicity in the rat. J Biosci. 1991;16:71–9. Katyare SS, Satav JG. Altered kinetic-properties of liver mitochondrial membrane-bound enzyme-activities following paracetamol hepatotoxicity in the rat. J Biosci. 1991;16:71–9.
149.
go back to reference Corkery RW. The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B. 2002;26:3–20. Corkery RW. The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B. 2002;26:3–20.
150.
go back to reference Smirnova YG, Marrink S-J, Lipowsky R, Knecht V. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J Am Chem Soc. 2010;132:6710–8. Smirnova YG, Marrink S-J, Lipowsky R, Knecht V. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J Am Chem Soc. 2010;132:6710–8.
151.
go back to reference Kasson PM, Lindahl E, Pande VS. Water ordering at membrane interfaces controls fusion dynamics. J Am Chem Soc. 2011;133:3812–5. Kasson PM, Lindahl E, Pande VS. Water ordering at membrane interfaces controls fusion dynamics. J Am Chem Soc. 2011;133:3812–5.
152.
go back to reference Smeijers AF, Markvoort AJ, Pieterse K, Hilbers PAJ. A detailed look at vesicle fusion. J Phys Chem B. 2006;110:13212–9. Smeijers AF, Markvoort AJ, Pieterse K, Hilbers PAJ. A detailed look at vesicle fusion. J Phys Chem B. 2006;110:13212–9.
153.
go back to reference Lee J, Lentz BR. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci USA. 1998;95:9274–9. Lee J, Lentz BR. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci USA. 1998;95:9274–9.
154.
go back to reference Scholz F. Mercury electrodes are indispensable tools for membrane research. Rev Polarogr. 2010;56:63–5. Scholz F. Mercury electrodes are indispensable tools for membrane research. Rev Polarogr. 2010;56:63–5.
Metadata
Title
Electrochemistry of Adhesion and Spreading of Lipid Vesicles on Electrodes
Authors
Victor Agmo Hernández
Uwe Lendeckel
Fritz Scholz
Copyright Year
2013
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-6148-7_6