Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2019

03-12-2018

Electrodeposition of nano crystalline cobalt oxide on porous copper electrode for supercapacitor

Authors: M. Kalyani, R. N. Emerson

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cobalt oxide thin films were prepared by electrodeposition methods on to porous copper substrate. As-deposited films were obtained as Co3O4 films with the help of heat treatment at 300 °C for 2 h. Their structural and surface morphological properties were investigated by using X-ray diffraction, Fourier transformation analysis and field emission scanning electron micrograph (FESEM), atomic force microscope, energy dispersive X-ray analysis techniques (EDAX). The X-ray diffractogram reveals the formation of cobalt hydroxide CoOOH with orthorhombic crystal structure and cobalt oxide Co3O4 with cubic crystal structure. The FESEM micrographs confirms the morphology of prepared films, also EDAX spectra confirms the presence of Co and O elements of the solid films. The electrochemical performance of the films was studied in aqueous 1 M KOH electrolyte using cyclic voltammetry. The cyclic voltammograms exhibits symmetric nature and increase in capacitance with respect to the film thickness. The maximum specific capacitance of cobalt hydroxide CoOOH is 602 F g−1 and cobalt oxide Co3O4 is found to be as 630 F g−1. The above investigation shows that low-cost cobalt oxide electrode can be a potential application in supercapacitor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Wee, W.F. Mak, N. Phonthammachai, A. Kiebele, M.V. Reddy, B.V.R. Chowdari, G. Gruner, M. Srinivasan, S.G. Mhaisalkar, Particle size effect of silver nanoparticles decorated single walled carbon nanotube electrode for supercapacitors. J. Electrochem. Sci. 157, A179–A184 (2010)CrossRef G. Wee, W.F. Mak, N. Phonthammachai, A. Kiebele, M.V. Reddy, B.V.R. Chowdari, G. Gruner, M. Srinivasan, S.G. Mhaisalkar, Particle size effect of silver nanoparticles decorated single walled carbon nanotube electrode for supercapacitors. J. Electrochem. Sci. 157, A179–A184 (2010)CrossRef
2.
go back to reference S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–3003 (2012)CrossRef S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–3003 (2012)CrossRef
3.
go back to reference P. Zhang, Z.P. Guo, S.G. Kang, Y.J. Choi, C.J. Kim, K.W. Kim, H.K. Liu, Three-dimensional Li2O–NiO–CoO composite thin-film anode with network structure for lithium-ion batteries. J. Power Sources 189, 566–570 (2009)CrossRef P. Zhang, Z.P. Guo, S.G. Kang, Y.J. Choi, C.J. Kim, K.W. Kim, H.K. Liu, Three-dimensional Li2O–NiO–CoO composite thin-film anode with network structure for lithium-ion batteries. J. Power Sources 189, 566–570 (2009)CrossRef
4.
go back to reference S.H. Nam, H.S. Shim, Y.S. Kim, M.A. Dar, J.G. Kim, W.B. Kim, Ag or Au nanoparticle embedded one-dimensional composite TiO2 nano fibres prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces 2(7), 2046–2052 (2010)CrossRef S.H. Nam, H.S. Shim, Y.S. Kim, M.A. Dar, J.G. Kim, W.B. Kim, Ag or Au nanoparticle embedded one-dimensional composite TiO2 nano fibres prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces 2(7), 2046–2052 (2010)CrossRef
5.
go back to reference X.J. Zhang, W.H. Shi, J.X. Zhu, D.J. Kharistal, W.Y. Zhao, B.S. Lalia, H.H. Hng, Q.Y. Yan, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO Nano belts and single-walled carbon nanotubes. ACS Nano 5(3), 2013–2019 (2011)CrossRef X.J. Zhang, W.H. Shi, J.X. Zhu, D.J. Kharistal, W.Y. Zhao, B.S. Lalia, H.H. Hng, Q.Y. Yan, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO Nano belts and single-walled carbon nanotubes. ACS Nano 5(3), 2013–2019 (2011)CrossRef
6.
go back to reference J.Chen,J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three dimensional Cu (OH)2 nano porous nano rods for solid-state supercapacitors. J. Mater. Chem. A3, 17385–17391 (2015) J.Chen,J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three dimensional Cu (OH)2 nano porous nano rods for solid-state supercapacitors. J. Mater. Chem. A3, 17385–17391 (2015)
7.
go back to reference Z. Dai, C.-S. Lee, B.-Y. Kim, C.-H. Kwak, J.-W. Yoon, H.-M. Jeong, J.-H. Lee, Honeycomb-like periodic porous LaFeO3 thin film chemi resistors with enhanced gas-sensing performances. ACS Appl. Mater. Interfaces 6, 16217–16226 (2014)CrossRef Z. Dai, C.-S. Lee, B.-Y. Kim, C.-H. Kwak, J.-W. Yoon, H.-M. Jeong, J.-H. Lee, Honeycomb-like periodic porous LaFeO3 thin film chemi resistors with enhanced gas-sensing performances. ACS Appl. Mater. Interfaces 6, 16217–16226 (2014)CrossRef
8.
go back to reference M.D. Tuller, L.M. Dudley, Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35, 1949–1964 (1999)CrossRef M.D. Tuller, L.M. Dudley, Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35, 1949–1964 (1999)CrossRef
9.
go back to reference K. Mondal, J. Kumar, A. Sharma, Self-organized macroporous thin carbon films for supported metal catalysis. J. Colloids Surf. A 427, 83–94 (2013)CrossRef K. Mondal, J. Kumar, A. Sharma, Self-organized macroporous thin carbon films for supported metal catalysis. J. Colloids Surf. A 427, 83–94 (2013)CrossRef
10.
go back to reference L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)CrossRef L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)CrossRef
11.
go back to reference L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010)CrossRef L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010)CrossRef
12.
go back to reference F.J. O’Brien, B.A. Harley, I.V. Yannas, L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25, 1077–1086 (2004)CrossRef F.J. O’Brien, B.A. Harley, I.V. Yannas, L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25, 1077–1086 (2004)CrossRef
13.
go back to reference A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacant, R. Langer, Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330 (1993)CrossRef A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacant, R. Langer, Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330 (1993)CrossRef
14.
go back to reference G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)CrossRef G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)CrossRef
15.
go back to reference B.C. Tappan, S.A. Steiner, E.P. Luther, Nano porous metal foams. Angew. Chem. Int. Ed. 49(27), 4544–4565 (2010)CrossRef B.C. Tappan, S.A. Steiner, E.P. Luther, Nano porous metal foams. Angew. Chem. Int. Ed. 49(27), 4544–4565 (2010)CrossRef
16.
go back to reference Y.S. Nam, T.G. Park, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47, 8–17 (1999)CrossRef Y.S. Nam, T.G. Park, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47, 8–17 (1999)CrossRef
17.
go back to reference A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion template in. Nature 389, 948–951 (1997)CrossRef A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion template in. Nature 389, 948–951 (1997)CrossRef
18.
go back to reference N.R. Cameron, High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46, 1439–1449 (2005)CrossRef N.R. Cameron, High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46, 1439–1449 (2005)CrossRef
19.
go back to reference S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J. Am. Ceram. Soc. 91, 2823–2829 (2008)CrossRef S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J. Am. Ceram. Soc. 91, 2823–2829 (2008)CrossRef
20.
go back to reference H. Fu, Q. Fu, N.L. Zhou, W. Huang, M.N. Rahamana, D. Wang, X. Liu, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C 29, 2275–2281 (2009)CrossRef H. Fu, Q. Fu, N.L. Zhou, W. Huang, M.N. Rahamana, D. Wang, X. Liu, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C 29, 2275–2281 (2009)CrossRef
21.
go back to reference S. Zhai, J.-R. Ye, N. Wang, L.-H. Jiang, Q. Shen, Fabrication of porous film with controlled pore size and wettability by electric breath figure method. J. Mater. Chem. C 2, 7168–7172 (2014)CrossRef S. Zhai, J.-R. Ye, N. Wang, L.-H. Jiang, Q. Shen, Fabrication of porous film with controlled pore size and wettability by electric breath figure method. J. Mater. Chem. C 2, 7168–7172 (2014)CrossRef
22.
go back to reference Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze drying process. J. Biomed. Mater. Res. B 67B, 732–740 (2003)CrossRef Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze drying process. J. Biomed. Mater. Res. B 67B, 732–740 (2003)CrossRef
23.
go back to reference I. Aranaz, M.C. Gutiérrez, M.L. Ferrer, F. del Monte, Preparation of chitosan nano composites with a macro porous structure by unidirectional freezing and subsequent freeze-drying. Mar. Drugs 12, 5619–5642 (2014)CrossRef I. Aranaz, M.C. Gutiérrez, M.L. Ferrer, F. del Monte, Preparation of chitosan nano composites with a macro porous structure by unidirectional freezing and subsequent freeze-drying. Mar. Drugs 12, 5619–5642 (2014)CrossRef
24.
go back to reference L. Qian, H. Zhang, Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 86, 172–184 (2011)CrossRef L. Qian, H. Zhang, Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 86, 172–184 (2011)CrossRef
25.
go back to reference A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminium oxide (AAO) tubular membranes. J. Membr. Sci. 319, 192–198 (2008)CrossRef A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminium oxide (AAO) tubular membranes. J. Membr. Sci. 319, 192–198 (2008)CrossRef
26.
go back to reference S. Cherevko, C.-H. Chung, The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 80(3), 1371–1377 (2010)CrossRef S. Cherevko, C.-H. Chung, The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 80(3), 1371–1377 (2010)CrossRef
27.
go back to reference S. Cherevko, C.-H. Chung, Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition. Electrochem. Acta 55(22), 6383–6390 (2010)CrossRef S. Cherevko, C.-H. Chung, Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition. Electrochem. Acta 55(22), 6383–6390 (2010)CrossRef
28.
go back to reference X. Xing, S. Cherevko, C.-H. Chung, Formation of nano porous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical de alloying. Mater. Chem. Phys. 126, 36 (2011)CrossRef X. Xing, S. Cherevko, C.-H. Chung, Formation of nano porous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical de alloying. Mater. Chem. Phys. 126, 36 (2011)CrossRef
29.
go back to reference S. Cherevko, N. Kulyk, C.-H. Chung, Nano porous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation. Nanoscale 4(1), 103 (2012)CrossRef S. Cherevko, N. Kulyk, C.-H. Chung, Nano porous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation. Nanoscale 4(1), 103 (2012)CrossRef
30.
go back to reference X.F. Han, S. Shamaila, R. Sharif, Ferromagnetic Nanowires and Nanotubes (Intech, Rijeka, 2010)CrossRef X.F. Han, S. Shamaila, R. Sharif, Ferromagnetic Nanowires and Nanotubes (Intech, Rijeka, 2010)CrossRef
31.
go back to reference A.D. Jagadale, V.S. Kumbhar, C.D. Lokhande, Supercapacitive activities of potentiodynamically deposited nano flakes of cobalt oxide (Co3O4) thin film electrode, J. Colloid Interface Sci. 406, 225–230 (2013)CrossRef A.D. Jagadale, V.S. Kumbhar, C.D. Lokhande, Supercapacitive activities of potentiodynamically deposited nano flakes of cobalt oxide (Co3O4) thin film electrode, J. Colloid Interface Sci. 406, 225–230 (2013)CrossRef
32.
go back to reference G. Wang, X. Shen, J. Horvat, Hydrothermal synthesis and optical, magnetic, and supercapacitane properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113, 4357–4361 (2009)CrossRef G. Wang, X. Shen, J. Horvat, Hydrothermal synthesis and optical, magnetic, and supercapacitane properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113, 4357–4361 (2009)CrossRef
33.
go back to reference R. Zhang, J. Liu, H. Guo, X. Tong, Fabrication of cobalt oxide/carbon core-branch nanowire arrays as cathode materials for supercapacitor application. Mater. Lett. 134, 190–193 (2014)CrossRef R. Zhang, J. Liu, H. Guo, X. Tong, Fabrication of cobalt oxide/carbon core-branch nanowire arrays as cathode materials for supercapacitor application. Mater. Lett. 134, 190–193 (2014)CrossRef
34.
go back to reference Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. R. Soc. Chem. 45, 1529–1541 (2016)CrossRef Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. R. Soc. Chem. 45, 1529–1541 (2016)CrossRef
35.
go back to reference H. Xia, Z. Peng, L.V. Cuncail, Y. Zhao, J. Hao, Z. Huang, Self-supported porous cobalt oxide nanowires with enhanced electrocatalytic performance toward oxygen evolution reaction. J. Chem. Sci. 128(12), 1879–1885 (2016)CrossRef H. Xia, Z. Peng, L.V. Cuncail, Y. Zhao, J. Hao, Z. Huang, Self-supported porous cobalt oxide nanowires with enhanced electrocatalytic performance toward oxygen evolution reaction. J. Chem. Sci. 128(12), 1879–1885 (2016)CrossRef
36.
go back to reference K.L. Ng, K.Y. Kok, B.H. Ong, Facile synthesis of self-assembled cobalt oxide supported on iron oxide as the novel electrocatalyst for enhanced electrochemical water electrolysis. ACS Appl. Nano Mater. 1, 401–409 (2017)CrossRef K.L. Ng, K.Y. Kok, B.H. Ong, Facile synthesis of self-assembled cobalt oxide supported on iron oxide as the novel electrocatalyst for enhanced electrochemical water electrolysis. ACS Appl. Nano Mater. 1, 401–409 (2017)CrossRef
37.
go back to reference Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)CrossRef Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)CrossRef
Metadata
Title
Electrodeposition of nano crystalline cobalt oxide on porous copper electrode for supercapacitor
Authors
M. Kalyani
R. N. Emerson
Publication date
03-12-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0389-y

Other articles of this Issue 2/2019

Journal of Materials Science: Materials in Electronics 2/2019 Go to the issue