Skip to main content
Top
Published in: Journal of Nanoparticle Research 8/2012

01-08-2012 | Research Paper

Electrokinetic motion of a rectangular nanoparticle in a nanochannel

Authors: Saeid Movahed, Dongqing Li

Published in: Journal of Nanoparticle Research | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson–Boltzmann equation and the Helmholtz–Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson–Nernst–Plank equation, the Navier–Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle’s motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle’s motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bonthuis DJ, Meyer C, Stein D, Dekker C (2008) Conformation and dynamics of DNA confined in slitlike nanofluidic channels. Phys Rev Lett 101:108303CrossRef Bonthuis DJ, Meyer C, Stein D, Dekker C (2008) Conformation and dynamics of DNA confined in slitlike nanofluidic channels. Phys Rev Lett 101:108303CrossRef
go back to reference Chattopadhyay S, Kulkarni NV, Choudhury K, Prasad R, Shahee A, Raja Sekhar BN, Sen P (2011) Lattice expansion in ZnSe quantum dots. Mater Lett 65:1625–1627CrossRef Chattopadhyay S, Kulkarni NV, Choudhury K, Prasad R, Shahee A, Raja Sekhar BN, Sen P (2011) Lattice expansion in ZnSe quantum dots. Mater Lett 65:1625–1627CrossRef
go back to reference Fine D, Grattoni A, Zabre E, Hussein F, Ferrari M, Liu X (2011) A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 11:2526–2534CrossRef Fine D, Grattoni A, Zabre E, Hussein F, Ferrari M, Liu X (2011) A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 11:2526–2534CrossRef
go back to reference Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485CrossRef Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485CrossRef
go back to reference Huh D, Mills KL, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidicmanipulation. Nat Mater 6:424–428CrossRef Huh D, Mills KL, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidicmanipulation. Nat Mater 6:424–428CrossRef
go back to reference Kadaksham ATJ, Singh P, Aubry N (2004) Dielectrophoresis of nanoparticles. Electrophoresis 25:3625–3632CrossRef Kadaksham ATJ, Singh P, Aubry N (2004) Dielectrophoresis of nanoparticles. Electrophoresis 25:3625–3632CrossRef
go back to reference Keh HJ, Anderson JL (1985) Boundary effects on electrophoretic motion of colloidal spheres. J Fluid Mech 153:417–439CrossRef Keh HJ, Anderson JL (1985) Boundary effects on electrophoretic motion of colloidal spheres. J Fluid Mech 153:417–439CrossRef
go back to reference Kim K, Kwang HS, Song TH (2011) A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium. Fluid Dyn Res 43(4):041401CrossRef Kim K, Kwang HS, Song TH (2011) A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium. Fluid Dyn Res 43(4):041401CrossRef
go back to reference Lee WG, Demirci U, Khademhosseini A (2009) Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol 1:242–251CrossRef Lee WG, Demirci U, Khademhosseini A (2009) Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol 1:242–251CrossRef
go back to reference Lee SY, Yalchin SE, Joo SW, Baysal O, Qian S (2010) Diffusiophoretic motion of a charged spherical particle in a nanopore. J Phys Chem B 114:6437–6446. doi:10.1021/jp9114207 CrossRef Lee SY, Yalchin SE, Joo SW, Baysal O, Qian S (2010) Diffusiophoretic motion of a charged spherical particle in a nanopore. J Phys Chem B 114:6437–6446. doi:10.​1021/​jp9114207 CrossRef
go back to reference Li D, Daghighi Y (2010) Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel. J Colloid Interface Sci 342:638–642CrossRef Li D, Daghighi Y (2010) Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel. J Colloid Interface Sci 342:638–642CrossRef
go back to reference Li WL, Tegenfeldt JO, Chen L, Austin RH, Chou SY, Kohl PA, Krotine J, Sturm JC (2003) Sacrificial polymers for nanofluidic channels in biological applications. Nanotechnology 14:578–583CrossRef Li WL, Tegenfeldt JO, Chen L, Austin RH, Chou SY, Kohl PA, Krotine J, Sturm JC (2003) Sacrificial polymers for nanofluidic channels in biological applications. Nanotechnology 14:578–583CrossRef
go back to reference Liu D, Maxey MR, Karniadakis GE (2005) Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries. J Micromech Microeng 15:2298–2308CrossRef Liu D, Maxey MR, Karniadakis GE (2005) Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries. J Micromech Microeng 15:2298–2308CrossRef
go back to reference Liu J, Wang M, Chen S, Robbins MO (2010) Molecular simulations of electroosmotic flows in rough nanochannels. J Comput Phys 229(20):7834–7847CrossRef Liu J, Wang M, Chen S, Robbins MO (2010) Molecular simulations of electroosmotic flows in rough nanochannels. J Comput Phys 229(20):7834–7847CrossRef
go back to reference Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up: a review. Lab Chip 5:492–500CrossRef Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up: a review. Lab Chip 5:492–500CrossRef
go back to reference Morgan H, Green NG (2002) AC electrokinetic: colloids and nanoparticles. Research Studies Press Ltd, Baldock Morgan H, Green NG (2002) AC electrokinetic: colloids and nanoparticles. Research Studies Press Ltd, Baldock
go back to reference Movahed S, Li D (2011a) Electrokinetic transport through nanochannels. Electrophoresis J 32:1259–1267CrossRef Movahed S, Li D (2011a) Electrokinetic transport through nanochannels. Electrophoresis J 32:1259–1267CrossRef
go back to reference Movahed S, Li D (2012) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369(1):442–452CrossRef Movahed S, Li D (2012) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369(1):442–452CrossRef
go back to reference Oron D, Aharoni A, de Mello Donega C, van Rijssel J, Meijerink A, Banin U (2009) Universal role of discrete acoustic phonons in the low-temperature optical emission of colloidal quantum dots. Phys Rev Lett 102:177402CrossRef Oron D, Aharoni A, de Mello Donega C, van Rijssel J, Meijerink A, Banin U (2009) Universal role of discrete acoustic phonons in the low-temperature optical emission of colloidal quantum dots. Phys Rev Lett 102:177402CrossRef
go back to reference Pennathur S, Santiago JS (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77(21):6772–6781CrossRef Pennathur S, Santiago JS (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77(21):6772–6781CrossRef
go back to reference Petsev DN, Lopez GP (2006) Electrostatic potential and electroosmotic flow in a cylindrical capillary filled with symmetric electrolyte: analytic solutions in thin double layer approximation. J Colloid Interface Sci 294(2):492–498CrossRef Petsev DN, Lopez GP (2006) Electrostatic potential and electroosmotic flow in a cylindrical capillary filled with symmetric electrolyte: analytic solutions in thin double layer approximation. J Colloid Interface Sci 294(2):492–498CrossRef
go back to reference Qian S, Joo SW (2008) Analysis of self-electrophoretic motion of a spherical particle in a nanotube: effect of nonuniform surface charge density. Langmuir 24:4778–4784CrossRef Qian S, Joo SW (2008) Analysis of self-electrophoretic motion of a spherical particle in a nanotube: effect of nonuniform surface charge density. Langmuir 24:4778–4784CrossRef
go back to reference Qian S, Joo SW, Hou WS, Zhao X (2008) Electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube. Langmuir 24:5332–5340CrossRef Qian S, Joo SW, Hou WS, Zhao X (2008) Electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube. Langmuir 24:5332–5340CrossRef
go back to reference Rafieia M, Mohebpour SR, Daneshmand F (2012) Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 44(7–8):1372–1379CrossRef Rafieia M, Mohebpour SR, Daneshmand F (2012) Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 44(7–8):1372–1379CrossRef
go back to reference Reisner W, Larsen NB, Silahtaroglu A, Kristensen A, Tommerup N, Tegenfeldt JO, Flyvbjerg H (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci USA 107(30):13294–13299CrossRef Reisner W, Larsen NB, Silahtaroglu A, Kristensen A, Tommerup N, Tegenfeldt JO, Flyvbjerg H (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci USA 107(30):13294–13299CrossRef
go back to reference Shugai AA, Carnie SL (1999) Carnie electrophoretic motion of a spherical particle with a thick double layer in bounded flows. J Colloid Interface Sci 213:298–315CrossRef Shugai AA, Carnie SL (1999) Carnie electrophoretic motion of a spherical particle with a thick double layer in bounded flows. J Colloid Interface Sci 213:298–315CrossRef
go back to reference Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC (2004) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378:1678–1692CrossRef Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC (2004) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378:1678–1692CrossRef
go back to reference Wang M, Chen S (2008) On applicability of Poisson–Boltzmann equation for micro- and nanoscale electroosmotic flows. Commun Comput Phys 3(5):1087–1099 Wang M, Chen S (2008) On applicability of Poisson–Boltzmann equation for micro- and nanoscale electroosmotic flows. Commun Comput Phys 3(5):1087–1099
go back to reference Wu Z, Li D (2009) Induced-charge electrophoretic motion of ideally polarizable particles. Electrochim Acta 54:3960–3967CrossRef Wu Z, Li D (2009) Induced-charge electrophoretic motion of ideally polarizable particles. Electrochim Acta 54:3960–3967CrossRef
go back to reference Wu Z, Gao Y, Li D (2009) Electrophoretic motion of ideally polarized particles in microchannels. Electrophoresis 30:773–781CrossRef Wu Z, Gao Y, Li D (2009) Electrophoretic motion of ideally polarized particles in microchannels. Electrophoresis 30:773–781CrossRef
go back to reference Xuan X, Ye C, Li D (2005) Near-wall electrophoretic motion of spherical particles in cylindrical capillaries. J Colloid Interface Sci 289:286–290CrossRef Xuan X, Ye C, Li D (2005) Near-wall electrophoretic motion of spherical particles in cylindrical capillaries. J Colloid Interface Sci 289:286–290CrossRef
go back to reference Ye C, Li D (2002) Electrophoretic motion of spherical particle in a microchannel under gravitational field. J Colloid Interface Sci 251:331–338CrossRef Ye C, Li D (2002) Electrophoretic motion of spherical particle in a microchannel under gravitational field. J Colloid Interface Sci 251:331–338CrossRef
go back to reference Ye C, Li D (2004a) 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel. J Colloid Interface Sci 272:480–488CrossRef Ye C, Li D (2004a) 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel. J Colloid Interface Sci 272:480–488CrossRef
go back to reference Ye C, Li D (2004b) Electrophoretic motion of two particles in a rectangular microchannel. Microfluid Nanofluid 1:52–61CrossRef Ye C, Li D (2004b) Electrophoretic motion of two particles in a rectangular microchannel. Microfluid Nanofluid 1:52–61CrossRef
go back to reference Ye C, Li D (2005) Eccentric electrophoretic motion of a spherical particle in a circular cylindrical microchannel. Microfluid Nanofluid 1:234–241CrossRef Ye C, Li D (2005) Eccentric electrophoretic motion of a spherical particle in a circular cylindrical microchannel. Microfluid Nanofluid 1:234–241CrossRef
go back to reference Yuan Z, Garcia A, Lopez GP, Petsev DN (2007) Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28:595–610CrossRef Yuan Z, Garcia A, Lopez GP, Petsev DN (2007) Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28:595–610CrossRef
go back to reference Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39:1014–1035. doi:10.1039/B902074H CrossRef Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39:1014–1035. doi:10.​1039/​B902074H CrossRef
Metadata
Title
Electrokinetic motion of a rectangular nanoparticle in a nanochannel
Authors
Saeid Movahed
Dongqing Li
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 8/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1032-0

Other articles of this Issue 8/2012

Journal of Nanoparticle Research 8/2012 Go to the issue

Premium Partners