Skip to main content
Top

2016 | OriginalPaper | Chapter

14. Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media

Authors : Helena I. Gomes, José M. Rodríguez-Maroto, Alexandra B. Ribeiro, Sibel Pamukcu, Celia Dias-Ferreira

Published in: Electrokinetics Across Disciplines and Continents

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter are presented both the experimental results of nZVI transport under electric fields, on mixtures of kaolin and glass beads to represent different porous media, and a generalized physicochemical and numerical model of this transport.
In the experiments, a low-level direct current was used to enhance the transport of poly(acrylic acid) sodium salt (PAA)-coated nZVI in a modified electrophoretic cell. The cell was equipped with internal auxiliary electrodes and a silver chloride reference electrode. The results showed that there were higher concentrations of iron across the test bed when the direct current was applied.
The model consists in the Nernst–Planck coupled system of equations, which accounts for the mass balance equation of ionic species in a fluid medium when diffusion and electromigration are considered in the ions transport process. In the case of the nZVI (with a negative charge), diffusion, and electrophoretic terms were taken into account. In all the cases, the electroosmotic flow was included in the equation. The use of electrical current to transport the nanoparticles prevents or hinders the nZVI particle aggregation, increasing their mobility. However, opposing directions of electrophoretic transport of negatively charged particles and the electroosmotic advection still produces low nZVI transport. To enhance the transport in soils with high electroosmotic conductivities, we suggest neutrally charged and stabilized nanoparticles that could be transported mainly by electroosmotic advection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chang R, Overby J (2011) General chemistry—the essential concepts. McGraw-Hill, New York Chang R, Overby J (2011) General chemistry—the essential concepts. McGraw-Hill, New York
go back to reference Chen S-S, Huang Y-C, Kuo T-Y (2010) The remediation of perchloroethylene contaminated groundwater by nanoscale iron reactive barrier integrated with surfactant and electrokinetics. Ground Water Monit Rem 30(4):90–98CrossRef Chen S-S, Huang Y-C, Kuo T-Y (2010) The remediation of perchloroethylene contaminated groundwater by nanoscale iron reactive barrier integrated with surfactant and electrokinetics. Ground Water Monit Rem 30(4):90–98CrossRef
go back to reference Chowdhury AIA, O’Carroll DM, Xu Y, Sleep BE (2012) Electrophoresis enhanced transport of nano-scale zero valent iron. Adv Water Resour 40:71–82. doi:10.1016/j.advwatres.2012.01.014CrossRef Chowdhury AIA, O’Carroll DM, Xu Y, Sleep BE (2012) Electrophoresis enhanced transport of nano-scale zero valent iron. Adv Water Resour 40:71–82. doi:10.1016/j.advwatres.2012.01.014CrossRef
go back to reference Elliott DW, Zhang W (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRef Elliott DW, Zhang W (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRef
go back to reference Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72. doi:10.1016/j.seppur.2013.04.030CrossRef Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72. doi:10.1016/j.seppur.2013.04.030CrossRef
go back to reference Gomes HI (2014) Coupling electrokinetics and iron nanoparticles for the remediation of contaminated soils. Ph.D. Dissertation. Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Portugal Gomes HI (2014) Coupling electrokinetics and iron nanoparticles for the remediation of contaminated soils. Ph.D. Dissertation. Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Portugal
go back to reference Gomes HI, Dias-Ferreira C, Ribeiro AB (2012a) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090. doi:10.1016/j.chemosphere.2012.02.037CrossRef Gomes HI, Dias-Ferreira C, Ribeiro AB (2012a) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090. doi:10.1016/j.chemosphere.2012.02.037CrossRef
go back to reference Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2012b) Electrokinetic enhanced transport of zero valent iron nanoparticles for chromium (VI) reduction in soils. Chem Eng Trans 28:139–144. ISBN:978-188-95608-95619-95608, ISSN:91974-99791, doi:95610.93303/CET1228024 Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2012b) Electrokinetic enhanced transport of zero valent iron nanoparticles for chromium (VI) reduction in soils. Chem Eng Trans 28:139–144. ISBN:978-188-95608-95619-95608, ISSN:91974-99791, doi:95610.93303/CET1228024
go back to reference Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2013) Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water Air Soil Pollut 224(12):1–12. doi:10.1007/s11270-013-1710-2CrossRef Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2013) Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water Air Soil Pollut 224(12):1–12. doi:10.1007/s11270-013-1710-2CrossRef
go back to reference Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014a) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interface Sci 433:189–195. doi:10.1016/j.jcis.2014.07.022CrossRef Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014a) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interface Sci 433:189–195. doi:10.1016/j.jcis.2014.07.022CrossRef
go back to reference Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2014b) Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere 99:171–179. doi:10.1016/j.chemosphere.2013.10.065CrossRef Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2014b) Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere 99:171–179. doi:10.1016/j.chemosphere.2013.10.065CrossRef
go back to reference Gomes HI, Fan G, Mateus EP, Dias-Ferreira C, Ribeiro AB (2014c) Assessment of combined electro–nanoremediation of molinate contaminated soil. Sci Total Environ 493:178–184. doi:10.1016/j.scitotenv.2014.05.112CrossRef Gomes HI, Fan G, Mateus EP, Dias-Ferreira C, Ribeiro AB (2014c) Assessment of combined electro–nanoremediation of molinate contaminated soil. Sci Total Environ 493:178–184. doi:10.1016/j.scitotenv.2014.05.112CrossRef
go back to reference Gomes HI, Rodríguez-Maroto JM, Ribeiro AB, Pamukcu S, Dias-Ferreira C (2015) Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochim Acta (in press). doi:10.1016/j.electacta.2014.11.157 Gomes HI, Rodríguez-Maroto JM, Ribeiro AB, Pamukcu S, Dias-Ferreira C (2015) Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochim Acta (in press). doi:10.1016/j.electacta.2014.11.157
go back to reference He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34CrossRef He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34CrossRef
go back to reference Henn KW, Waddill DW (2006) Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediation 16(2):57–77CrossRef Henn KW, Waddill DW (2006) Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediation 16(2):57–77CrossRef
go back to reference Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41(18):6418–6424. doi:10.1021/es0704075CrossRef Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41(18):6418–6424. doi:10.1021/es0704075CrossRef
go back to reference Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170(2–3):482–491. doi:10.1016/j.cej.2011.02.065CrossRef Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170(2–3):482–491. doi:10.1016/j.cej.2011.02.065CrossRef
go back to reference Jones EH, Reynolds DA, Wood AL, Thomas DG (2010) Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49(2):172–183. doi:10.1111/j.1745-6584.2010.00718.xCrossRef Jones EH, Reynolds DA, Wood AL, Thomas DG (2010) Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49(2):172–183. doi:10.1111/j.1745-6584.2010.00718.xCrossRef
go back to reference Kanel S, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanoparticle Res 9(5):725–735. doi:10.1007/s11051-007-9225-7CrossRef Kanel S, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanoparticle Res 9(5):725–735. doi:10.1007/s11051-007-9225-7CrossRef
go back to reference Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900CrossRef Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900CrossRef
go back to reference Kim H-J, Phenrat T, Tilton RD, Lowry GV (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370(1):1–10. doi:10.1016/j.jcis.2011.12.059CrossRef Kim H-J, Phenrat T, Tilton RD, Lowry GV (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370(1):1–10. doi:10.1016/j.jcis.2011.12.059CrossRef
go back to reference Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins LM, Peace C, Sleep BE, O’Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48(5):2862–2869. doi:10.1021/es4044209CrossRef Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins LM, Peace C, Sleep BE, O’Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48(5):2862–2869. doi:10.1021/es4044209CrossRef
go back to reference Lin Y-H, Tseng H-H, Wey M-Y, Lin M-D (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408(10):2260–2267. doi:10.1016/j.scitotenv.2010.01.039CrossRef Lin Y-H, Tseng H-H, Wey M-Y, Lin M-D (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408(10):2260–2267. doi:10.1016/j.scitotenv.2010.01.039CrossRef
go back to reference Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New York Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New York
go back to reference Mueller NC, Jr B, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558. doi:10.1007/s11356-011-0576-3CrossRef Mueller NC, Jr B, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558. doi:10.1007/s11356-011-0576-3CrossRef
go back to reference Newman J (1991) Electrochemical Systems. Prentice Hall, Englewood Cliffs Newman J (1991) Electrochemical Systems. Prentice Hall, Englewood Cliffs
go back to reference Noubactep C, Caré S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 22(3):1363–1382. doi:10.1007/s11270-011-0951-1CrossRef Noubactep C, Caré S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 22(3):1363–1382. doi:10.1007/s11270-011-0951-1CrossRef
go back to reference Pamukcu S, Hannum L, Wittle JK (2008) Delivery and activation of nano-iron by DC electric field. J Environ Sci Health A 43(8):934–944CrossRef Pamukcu S, Hannum L, Wittle JK (2008) Delivery and activation of nano-iron by DC electric field. J Environ Sci Health A 43(8):934–944CrossRef
go back to reference Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290CrossRef Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290CrossRef
go back to reference Phenrat T, Kim H-J, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV (2009a) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns. Environ Sci Technol 43:5079–5085CrossRef Phenrat T, Kim H-J, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV (2009a) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns. Environ Sci Technol 43:5079–5085CrossRef
go back to reference Phenrat T, Liu Y, Tilton RD, Lowry GV (2009b) Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43:1507–1514CrossRef Phenrat T, Liu Y, Tilton RD, Lowry GV (2009b) Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43:1507–1514CrossRef
go back to reference Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318. doi:10.1021/es0490018CrossRef Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318. doi:10.1021/es0490018CrossRef
go back to reference Rao PSC, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL (2001) Technology integration for contaminated site remediation: clean-up goals and performance criteria. In: Groundwater quality: natural and enhanced restoration of groundwater pollutions. Proceedings of the groundwater quality 2001 conference, Sheffield, IAHS publications no. 275, pp 571–578 Rao PSC, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL (2001) Technology integration for contaminated site remediation: clean-up goals and performance criteria. In: Groundwater quality: natural and enhanced restoration of groundwater pollutions. Proceedings of the groundwater quality 2001 conference, Sheffield, IAHS publications no. 275, pp 571–578
go back to reference Raychoudhury T, Naja G, Ghoshal S (2010) Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. J Contam Hydrol 118(3–4):143–151. doi:10.1016/j.jconhyd.2010.09.005CrossRef Raychoudhury T, Naja G, Ghoshal S (2010) Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. J Contam Hydrol 118(3–4):143–151. doi:10.1016/j.jconhyd.2010.09.005CrossRef
go back to reference Reddy KR, Karri MR (2008) Electrokinetic delivery of nanoiron amended with surfactant and cosolvent in contaminated soil. In: Proceedings of the international conference on waste engineering and management, Hong Kong, May 2008 Reddy KR, Karri MR (2008) Electrokinetic delivery of nanoiron amended with surfactant and cosolvent in contaminated soil. In: Proceedings of the international conference on waste engineering and management, Hong Kong, May 2008
go back to reference Reddy KR, Darko-Kagy K, Cameselle C (2011) Electrokinetic-enhanced transport of lactate-modified nanoscale iron particles for degradation of dinitrotoluene in clayey soils. Sep Purif Technol 79(2):230–237CrossRef Reddy KR, Darko-Kagy K, Cameselle C (2011) Electrokinetic-enhanced transport of lactate-modified nanoscale iron particles for degradation of dinitrotoluene in clayey soils. Sep Purif Technol 79(2):230–237CrossRef
go back to reference Rosales E, Loch JPG, Dias-Ferreira C (2014) Electro-osmotic transport of nano zero-valent iron in Boom Clay. Electrochim Acta 127:27–33. doi:10.1016/j.electacta.2014.01.164CrossRef Rosales E, Loch JPG, Dias-Ferreira C (2014) Electro-osmotic transport of nano zero-valent iron in Boom Clay. Electrochim Acta 127:27–33. doi:10.1016/j.electacta.2014.01.164CrossRef
go back to reference Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355. doi:10.1021/es071936bCrossRef Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355. doi:10.1021/es071936bCrossRef
go back to reference Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRef Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRef
go back to reference Su C, Puls RW, Krug TA, Watling MT, O’Hara SK, Quinn JW, Ruiz NE (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071–5084. doi:10.1016/j.watres.2012.06.051CrossRef Su C, Puls RW, Krug TA, Watling MT, O’Hara SK, Quinn JW, Ruiz NE (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071–5084. doi:10.1016/j.watres.2012.06.051CrossRef
go back to reference Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21. doi:10.1016/j.jclepro.2013.12.026CrossRef Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21. doi:10.1016/j.jclepro.2013.12.026CrossRef
go back to reference USEPA (2011a) Permeable reactive barriers, permeable treatment zones, and application of zero-valent iron: overview, technology innovation and field services division. USEPA, Washington, DC USEPA (2011a) Permeable reactive barriers, permeable treatment zones, and application of zero-valent iron: overview, technology innovation and field services division. USEPA, Washington, DC
go back to reference USEPA (2011b) Fact sheet on selected sites using or testing nanoparticles for remediation. United States Environmental Protection Agency USEPA (2011b) Fact sheet on selected sites using or testing nanoparticles for remediation. United States Environmental Protection Agency
go back to reference Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRef Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRef
go back to reference Yang GCC, Chang Y-I (2011) Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep Purif Technol 79:278–284CrossRef Yang GCC, Chang Y-I (2011) Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep Purif Technol 79:278–284CrossRef
go back to reference Yang GCC, Tu H-C, Hung C-H (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172CrossRef Yang GCC, Tu H-C, Hung C-H (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172CrossRef
go back to reference Yang GCC, Hung C-H, Tu H-C (2008) Electrokinetically enhanced removal and degradation of nitrate in the subsurface using nanosized Pd/Fe slurry. J Environ Sci Health A 43(8):945–951CrossRef Yang GCC, Hung C-H, Tu H-C (2008) Electrokinetically enhanced removal and degradation of nitrate in the subsurface using nanosized Pd/Fe slurry. J Environ Sci Health A 43(8):945–951CrossRef
go back to reference Yuan S, Long H, Xie W, Liao P, Tong M (2012) Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma 185–186:18–25. doi:10.1016/j.geoderma.2012.03.028CrossRef Yuan S, Long H, Xie W, Liao P, Tong M (2012) Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma 185–186:18–25. doi:10.1016/j.geoderma.2012.03.028CrossRef
go back to reference Zhang W, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediat J 16(2):7–21CrossRef Zhang W, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediat J 16(2):7–21CrossRef
go back to reference Zhang W, Wang C-B, Lien H-L (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRef Zhang W, Wang C-B, Lien H-L (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRef
Metadata
Title
Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media
Authors
Helena I. Gomes
José M. Rodríguez-Maroto
Alexandra B. Ribeiro
Sibel Pamukcu
Celia Dias-Ferreira
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-20179-5_14