Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-08-2020 | ORIGINAL ARTICLE | Issue 6/2020

Journal of Material Cycles and Waste Management 6/2020

Electrolysis using Pt/SS electrodes for aluminum recovery from drinking water treatment sludge

Journal:
Journal of Material Cycles and Waste Management > Issue 6/2020
Authors:
Rizkiy Amaliyah Barakwan, Wahyu Budi Pratiwi, Yulinah Trihadiningrum, Arseto Yekti Bagastyo
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10163-020-01097-0) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Alum sludge from the drinking water treatment plant (DWTP) of Surabaya City, Indonesia, potentially contains high aluminum and organic pollutant contents. Aluminum is sourced from the use of aluminum sulfate as a coagulant during the water treatment process. Whereas, the organic pollutant is from domestic and industrial wastewater discharges into the raw water source. Aims of this study were to characterize the alum sludge of the Surabaya DWTP, to determine suitable electrode materials and optimum electrical current for aluminum recovery using electrolysis. The sludge was characterized according to metal concentrations and chemical oxygen demand (COD). Cyclic voltammetry, a common method for determining appropriate electrode materials for electrolysis, was conducted to confirm platinum (Pt) and stainless steel A304 (SS A304) as suitable electrodes. A polarization test was applied to determine the current for electrolysis. Electrolysis using these electrodes was conducted in one compartment reactor for 6 h. The results showed that the sludge had high concentrations of aluminum and organic substance. The suitable anode and cathode in the electrolysis of acidified alum sludge at pH 3 were Pt and SS A304, respectively. Aluminum recovery efficiency was achieved at 300 mA (52.10%), in which metal impurities were low, and COD removal was 24%.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 6/2020

Journal of Material Cycles and Waste Management 6/2020 Go to the issue