Skip to main content
Top

2020 | OriginalPaper | Chapter

10. Electromagnetic Bandgap Structures

Authors : R. Venkata Sravya, Runa Kumari

Published in: Multiscale Modelling of Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In 1970s, Howell introduced Microstrip patch antenna. It is one of the most commonly used antennae in wireless communication, satellite communication, wearable applications and many more applications due to its properties like low weight, compact, low cost, conformal structure, easy integration with circuits, etc. Patch antenna has simple configuration designed with a substrate of dielectric constant, ϵr ≥ 1 with some height. While designing the patch antenna, the height of the substrate should have considered to be greater than λ/4 so that efficiency of antenna can be enhanced. To address the low gain issue of patch antenna, array antenna designs are proposed. In case of array antenna, the minimum required distance between any two array elements has to be λ/2. However, to design a compact antenna, the substrate height should be less than λ/4 and the distance between the array element is taken to be less than λ/2. As a result, surface waves are generated in substrate, which is added destructively with transmitting signal and degrade the performance of antenna [1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sievenpiper DF (1999) High impedance electromagnetic surfaces. PhD dissertation, University of California Sievenpiper DF (1999) High impedance electromagnetic surfaces. PhD dissertation, University of California
2.
go back to reference Yang F, Rahmat-Samii Y (2009) Electromagnetic band gap structures in antenna engineering, 2nd edn. Cambridge University Press Yang F, Rahmat-Samii Y (2009) Electromagnetic band gap structures in antenna engineering, 2nd edn. Cambridge University Press
3.
go back to reference Wongsan R, Kamphikul P (2016) Gain enhancement of slot array for base station using cavity of curved-woodpile metamaterial. In: 2016 International symposium on antennas and propagation (ISAP), pp 158–159 Wongsan R, Kamphikul P (2016) Gain enhancement of slot array for base station using cavity of curved-woodpile metamaterial. In: 2016 International symposium on antennas and propagation (ISAP), pp 158–159
4.
go back to reference Hassan SMS, Mollah MN (2016) Identical performance from distinct conventional electromagnetic bandgap structures. IET Microwaves Antennas Propag 10(12):1251–1258CrossRef Hassan SMS, Mollah MN (2016) Identical performance from distinct conventional electromagnetic bandgap structures. IET Microwaves Antennas Propag 10(12):1251–1258CrossRef
5.
go back to reference Ameelia Roseline A, Malathi K, Shrivastav AK (2011) Enhanced performance of a patch antenna using spiral-shaped electromagnetic bandgap structures for high-speed wireless networks. IET Microwaves, Antennas Propag 5(14):1750–1755CrossRef Ameelia Roseline A, Malathi K, Shrivastav AK (2011) Enhanced performance of a patch antenna using spiral-shaped electromagnetic bandgap structures for high-speed wireless networks. IET Microwaves, Antennas Propag 5(14):1750–1755CrossRef
6.
go back to reference Kim SH, Lee JY, Nguyen TT, Jang JH (2013) High-performance MIMO antenna with 1-D EBG ground structures for handset application. IEEE Antennas Wirel Propag Lett 12:1468–1471CrossRef Kim SH, Lee JY, Nguyen TT, Jang JH (2013) High-performance MIMO antenna with 1-D EBG ground structures for handset application. IEEE Antennas Wirel Propag Lett 12:1468–1471CrossRef
7.
go back to reference Lee JY, Kim SH, Jang J-H (2015) Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Trans Antennas Propag 63(9):4194–4198CrossRef Lee JY, Kim SH, Jang J-H (2015) Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Trans Antennas Propag 63(9):4194–4198CrossRef
8.
go back to reference Boutayeb H, Denidni TA (2007) Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Trans Antennas Propag 55(11):3140–3145CrossRef Boutayeb H, Denidni TA (2007) Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Trans Antennas Propag 55(11):3140–3145CrossRef
9.
go back to reference McKinzie WE, Nair DM, Thrasher BA, Smith MA, Hughes ED, Parisi JM (2016) 60 GHz LTCC patch antenna array with an integrated EBG structure for gain enhancement. IEEE Antennas Wirel Propag Lett 15:1522–1525CrossRef McKinzie WE, Nair DM, Thrasher BA, Smith MA, Hughes ED, Parisi JM (2016) 60 GHz LTCC patch antenna array with an integrated EBG structure for gain enhancement. IEEE Antennas Wirel Propag Lett 15:1522–1525CrossRef
10.
go back to reference Han ZJ, Song W, Sheng XQ (2017) Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface. IEEE Antennas Wirel Propag Lett 16:1631–1634CrossRef Han ZJ, Song W, Sheng XQ (2017) Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface. IEEE Antennas Wirel Propag Lett 16:1631–1634CrossRef
11.
go back to reference Jiang H, Xue Z, Li W, Ren W (2017) RCS reduction and gain enhancement for slot antenna array. In: 2017 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting. San Diego, CA, USA, pp 2247–2248 Jiang H, Xue Z, Li W, Ren W (2017) RCS reduction and gain enhancement for slot antenna array. In: 2017 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting. San Diego, CA, USA, pp 2247–2248
12.
go back to reference Sravya RV, Kumari R (2018) Gain enhancement of patch antenna using L-slotted mushroom EBG. In: 2018 Conference on signal processing and communication engineering systems (SPACES). Vijayawada, pp 37–40 Sravya RV, Kumari R (2018) Gain enhancement of patch antenna using L-slotted mushroom EBG. In: 2018 Conference on signal processing and communication engineering systems (SPACES). Vijayawada, pp 37–40
13.
go back to reference Goussetis G, Feresidis AP, Vardaxoglou JC (2004) Periodically loaded 1-D metallodielectric electromagnetic bandgap structures for miniaturisation and bandwidth enhancement. IEE Proceedings—Microwaves, Antennas Propag 151(6):481–485CrossRef Goussetis G, Feresidis AP, Vardaxoglou JC (2004) Periodically loaded 1-D metallodielectric electromagnetic bandgap structures for miniaturisation and bandwidth enhancement. IEE Proceedings—Microwaves, Antennas Propag 151(6):481–485CrossRef
14.
go back to reference Kim M, Koo K, Kim J, Kim J (2012) Vertical inductive bridge EBG (VIB-EBG) structure with size reduction and stopband enhancement for wideband SSN suppression. IEEE Microwave Wirel Compon Lett 22(8):403–405CrossRef Kim M, Koo K, Kim J, Kim J (2012) Vertical inductive bridge EBG (VIB-EBG) structure with size reduction and stopband enhancement for wideband SSN suppression. IEEE Microwave Wirel Compon Lett 22(8):403–405CrossRef
15.
go back to reference Bhavarthe PP, Rathod SS, Reddy KTV (2017) A compact two via slot-type electromagnetic bandgap structure. IEEE Microwave Wirel Compon Lett 27(5):446–448CrossRef Bhavarthe PP, Rathod SS, Reddy KTV (2017) A compact two via slot-type electromagnetic bandgap structure. IEEE Microwave Wirel Compon Lett 27(5):446–448CrossRef
16.
go back to reference Bhavarthe PP, Rathod SS, Reddy KTV (2018) A compact two-via hammer spanner-type polarization-dependent electromagnetic bandgap structure. IEEE Microwave Wirel Compon Lett 28(4):284–286CrossRef Bhavarthe PP, Rathod SS, Reddy KTV (2018) A compact two-via hammer spanner-type polarization-dependent electromagnetic bandgap structure. IEEE Microwave Wirel Compon Lett 28(4):284–286CrossRef
17.
go back to reference Assimonis SD, Yioultsis TV, Antonopoulos CS (2012) Computational investigation and design of planar EBG structures for coupling reduction in antenna applications. IEEE Trans Magn 48(2):771–774CrossRef Assimonis SD, Yioultsis TV, Antonopoulos CS (2012) Computational investigation and design of planar EBG structures for coupling reduction in antenna applications. IEEE Trans Magn 48(2):771–774CrossRef
18.
go back to reference Arora A, Kumar N (2017) To reduce mutual coupling in microstrip patch antenna arrays elements using electromagnetic band gap structures for X-band. In: 2017 International conference on nextgen electronic technologies: silicon to software (ICNETS2). Chennai, India, pp 228–230 Arora A, Kumar N (2017) To reduce mutual coupling in microstrip patch antenna arrays elements using electromagnetic band gap structures for X-band. In: 2017 International conference on nextgen electronic technologies: silicon to software (ICNETS2). Chennai, India, pp 228–230
19.
go back to reference Al-Hasan MJ, Denidni TA, Sebak AR (2015) Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Trans Antennas Propag 63(2):823–828CrossRef Al-Hasan MJ, Denidni TA, Sebak AR (2015) Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Trans Antennas Propag 63(2):823–828CrossRef
20.
go back to reference Ashyap AYI et al (2017) Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas Wirel Propag Lett 16:2550–2553CrossRef Ashyap AYI et al (2017) Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas Wirel Propag Lett 16:2550–2553CrossRef
21.
go back to reference Umar SM, Ahmad F, Khan WUR, Ullah S (2016) Specific absorption rate analysis of a WLAN antenna using mushroom-type electromagnetic bandgap (EBG) structure. In: 2016 13th International bhurban conference on applied sciences and technology (IBCAST). Islamabad, Pakistan, pp 631–635 Umar SM, Ahmad F, Khan WUR, Ullah S (2016) Specific absorption rate analysis of a WLAN antenna using mushroom-type electromagnetic bandgap (EBG) structure. In: 2016 13th International bhurban conference on applied sciences and technology (IBCAST). Islamabad, Pakistan, pp 631–635
22.
go back to reference Khan WUR, Umar SM, Ahmad F, Ullah S (2016) Specific absorption rate analysis of a WLAN antenna using slotted I-Type electromagentic bandgap (EBG) structure. In: 2016 International conference on intelligent systems engineering (ICISE), pp 110–115 Khan WUR, Umar SM, Ahmad F, Ullah S (2016) Specific absorption rate analysis of a WLAN antenna using slotted I-Type electromagentic bandgap (EBG) structure. In: 2016 International conference on intelligent systems engineering (ICISE), pp 110–115
Metadata
Title
Electromagnetic Bandgap Structures
Authors
R. Venkata Sravya
Runa Kumari
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2267-3_10