Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Electron Microscopy Protocols for the Study of Hydrocarbon-Producing and Hydrocarbon-Decomposing Microbes: Classical and Advanced Methods

Authors : Kamna Jhamb, Manfred Auer

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the fascinating areas of hydrocarbon microbiology biology is the quest for an ultratstructural understanding of (macro)-molecular mechanisms underlying the degradation, synthesis, and intracellular storage of hydrocarbons, which due to their hydrophobic characteristics continuously threaten the integrity of biological membranes. Here we review classical and novel advanced electron microscopy approaches, including correlative light and electron microscopy that in combination with genetics and biochemical experimentation can be utilized to study such hydrocarbon–cell interactions.
Literature
1.
go back to reference Ladygina N, Deyukhina EG, Veinshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014CrossRef Ladygina N, Deyukhina EG, Veinshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014CrossRef
2.
go back to reference Head I, Aitken C, Gray N et al (2010) Hydrocarbon degradation in petroleum reservoirs. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg Head I, Aitken C, Gray N et al (2010) Hydrocarbon degradation in petroleum reservoirs. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg
3.
go back to reference Sierra-Garcia I, de Oliveira V (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs. In: Chamy R (ed) Biodegradation – engineering and technology. InTech, ISBN: 978-953-51-1153-5, doi:10.5772/55920 Sierra-Garcia I, de Oliveira V (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs. In: Chamy R (ed) Biodegradation – engineering and technology. InTech, ISBN: 978-953-51-1153-5, doi:10.​5772/​55920
4.
go back to reference Wenger L, Davis C, Isaksen G 2002 Multiple controls on petroleum biodegradation and impact on oil quality. In: Society for petroleum engineers (SPE) reservoir evaluation and engineering, pp 375–383 Wenger L, Davis C, Isaksen G 2002 Multiple controls on petroleum biodegradation and impact on oil quality. In: Society for petroleum engineers (SPE) reservoir evaluation and engineering, pp 375–383
5.
go back to reference Roling W, Head I, Larter S (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154:321–328CrossRefPubMed Roling W, Head I, Larter S (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154:321–328CrossRefPubMed
6.
go back to reference Atlas R, Bartha R (1993) Microbial ecology - fundamentals and applications. Benjamin-Cummings, Redwood City Atlas R, Bartha R (1993) Microbial ecology - fundamentals and applications. Benjamin-Cummings, Redwood City
7.
go back to reference Atlas R (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209PubMedPubMedCentral Atlas R (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209PubMedPubMedCentral
9.
go back to reference Muthuswamy S, Binupriya A, Baik S, Yun S (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36(1):92–96 Muthuswamy S, Binupriya A, Baik S, Yun S (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36(1):92–96
11.
go back to reference Hazen T, Dubinsky E, De Santis T, Andersen G et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208CrossRefPubMed Hazen T, Dubinsky E, De Santis T, Andersen G et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208CrossRefPubMed
12.
go back to reference Baelum J, Borglin S, Chakraborty R, Fortney J et al (2012) Deep-sea bacteria enriched by oil and dispersant from the deepwater horizon spill. Environ Microbiol 14(9):2405–2416CrossRefPubMed Baelum J, Borglin S, Chakraborty R, Fortney J et al (2012) Deep-sea bacteria enriched by oil and dispersant from the deepwater horizon spill. Environ Microbiol 14(9):2405–2416CrossRefPubMed
14.
go back to reference Kostka J, Prakash O, Overholt W, Green S et al (2011) Hydrocarbon degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962CrossRefPubMedPubMedCentral Kostka J, Prakash O, Overholt W, Green S et al (2011) Hydrocarbon degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962CrossRefPubMedPubMedCentral
15.
go back to reference Scott C, Finnerty W (1976) A comparative analysis of the ultrastructure of hydrocarbon – oxidizing microorganisms. J Gen Microbiol 94:342–350CrossRefPubMed Scott C, Finnerty W (1976) A comparative analysis of the ultrastructure of hydrocarbon – oxidizing microorganisms. J Gen Microbiol 94:342–350CrossRefPubMed
17.
go back to reference Singer M, Tyler S, Finnerty W (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162(1):162PubMedPubMedCentral Singer M, Tyler S, Finnerty W (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162(1):162PubMedPubMedCentral
18.
go back to reference Alvarez H, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefPubMed Alvarez H, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefPubMed
19.
go back to reference Waltermann M, Steinbuchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation and relationship to eukaryotic lipid depots. J Bacteriol 187(11):3607CrossRefPubMedPubMedCentral Waltermann M, Steinbuchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation and relationship to eukaryotic lipid depots. J Bacteriol 187(11):3607CrossRefPubMedPubMedCentral
20.
go back to reference Marin M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44:660–667CrossRef Marin M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44:660–667CrossRef
21.
go back to reference Waltermann M, Hinz A, Robenek H et al (2005) Mechanism of lipid body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763CrossRefPubMed Waltermann M, Hinz A, Robenek H et al (2005) Mechanism of lipid body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763CrossRefPubMed
22.
go back to reference Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRef Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRef
24.
go back to reference Shi S, Valle-Rodriguez J, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechnol J 6:277–285CrossRefPubMed Shi S, Valle-Rodriguez J, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechnol J 6:277–285CrossRefPubMed
26.
go back to reference Davies S, Whittenbury R (1970) Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol 61:227–232CrossRefPubMed Davies S, Whittenbury R (1970) Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol 61:227–232CrossRefPubMed
27.
go back to reference Kennedy R, Finnerty W, Sudarsanan K, Young R (1974) Microbial assimilation of hydrocarbons. I. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp. Arch Microbiol 102:75–83CrossRef Kennedy R, Finnerty W, Sudarsanan K, Young R (1974) Microbial assimilation of hydrocarbons. I. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp. Arch Microbiol 102:75–83CrossRef
28.
go back to reference Alvarez H, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165(6):377–386CrossRefPubMed Alvarez H, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165(6):377–386CrossRefPubMed
29.
go back to reference Diestra E, Esteve I, Burnat M, Maldonado J, Sole A (2007) Isolation and characterization of a heterotrophic bacterium able to grow in different environmental stress conditions, including crude oil and heavy metals. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formex, Badajoz Diestra E, Esteve I, Burnat M, Maldonado J, Sole A (2007) Isolation and characterization of a heterotrophic bacterium able to grow in different environmental stress conditions, including crude oil and heavy metals. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formex, Badajoz
30.
go back to reference Osumi M (2012) Visualization of yeast cells by electron microscopy. J Electron Microsc 61(6):343–365CrossRef Osumi M (2012) Visualization of yeast cells by electron microscopy. J Electron Microsc 61(6):343–365CrossRef
31.
go back to reference Li Z (ed) (2002) Industrial application of electron microscopy. CRC Press, Boca Raton, p 362 Li Z (ed) (2002) Industrial application of electron microscopy. CRC Press, Boca Raton, p 362
32.
go back to reference Wigglesworth V (1975) Lipid staining for the electron microscope: a new method. J Cell Sci 19:425–437PubMed Wigglesworth V (1975) Lipid staining for the electron microscope: a new method. J Cell Sci 19:425–437PubMed
33.
go back to reference Trent J (1984) Ruthenium tetraoxide staining of polymers: new preparative methods for electron microscopy. Macromolecules 17:2930–2931CrossRef Trent J (1984) Ruthenium tetraoxide staining of polymers: new preparative methods for electron microscopy. Macromolecules 17:2930–2931CrossRef
34.
go back to reference Khandpur A, Macosko C, Bates F (1995) Transmission electron microscopy of saturated hydrocarbon block copolymers. J Polym Sci B Polym Phys 33:247–252CrossRef Khandpur A, Macosko C, Bates F (1995) Transmission electron microscopy of saturated hydrocarbon block copolymers. J Polym Sci B Polym Phys 33:247–252CrossRef
35.
go back to reference Richter H, Sleytr U (1971) Fettextraction bei −78°C: nachweis im Gefrieratzbild. Z Naturforsch 26b:470–473 Richter H, Sleytr U (1971) Fettextraction bei −78°C: nachweis im Gefrieratzbild. Z Naturforsch 26b:470–473
36.
go back to reference Meyer H, Winkelmann H (1970) Die Darstellung von lipiden bei der gefrieratzpraparation und ihre beziehung zur strukturanalyse biologischer membranen. Exp Pathol 4:47–59 Meyer H, Winkelmann H (1970) Die Darstellung von lipiden bei der gefrieratzpraparation und ihre beziehung zur strukturanalyse biologischer membranen. Exp Pathol 4:47–59
38.
39.
go back to reference Scott C, Finnerty W (1976) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter Species HO1-N. J Bacteriol 127(1):481–489PubMedPubMedCentral Scott C, Finnerty W (1976) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter Species HO1-N. J Bacteriol 127(1):481–489PubMedPubMedCentral
40.
go back to reference Ishige T, Tani A, Takabe K, Kawasaki K et al (2002) Wax ester production from n-Alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68(3):1192–1195CrossRefPubMedPubMedCentral Ishige T, Tani A, Takabe K, Kawasaki K et al (2002) Wax ester production from n-Alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68(3):1192–1195CrossRefPubMedPubMedCentral
41.
go back to reference Bleck C, Merz A, Gutierrez M, Alther P et al (2010) Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J Microsc 237:23–28CrossRefPubMed Bleck C, Merz A, Gutierrez M, Alther P et al (2010) Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J Microsc 237:23–28CrossRefPubMed
42.
go back to reference Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins - application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108:3443–3449PubMed Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins - application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108:3443–3449PubMed
43.
go back to reference Severs N (1995) Freeze-fracture cytochemistry: an explanatory survey of methods. In: Severs N, Shotton D (eds) Rapid freezing, freeze fracture, and deep etching. Wiley-Liss, New York, pp 173–208 Severs N (1995) Freeze-fracture cytochemistry: an explanatory survey of methods. In: Severs N, Shotton D (eds) Rapid freezing, freeze fracture, and deep etching. Wiley-Liss, New York, pp 173–208
44.
45.
go back to reference Scott C, Makula S, Finnerty W (1976) Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp. J Bacteriol 127(1):469–480PubMedPubMedCentral Scott C, Makula S, Finnerty W (1976) Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp. J Bacteriol 127(1):469–480PubMedPubMedCentral
46.
go back to reference Kellenberger E, Johansen R, Maeder M, Bohrmann B et al (1992) Artefacts and morphological changes during chemical fixation. J Microsc 168:181–201CrossRefPubMed Kellenberger E, Johansen R, Maeder M, Bohrmann B et al (1992) Artefacts and morphological changes during chemical fixation. J Microsc 168:181–201CrossRefPubMed
47.
go back to reference Mc Donald K, Auer M (2006) High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41(2):137, 139, 141 Mc Donald K, Auer M (2006) High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41(2):137, 139, 141
48.
go back to reference Djaczenko W, Muller M, Benedetto A (1990) Ultra-rapid high pressure freezing in high resolution EM of cell-cell and cell-substrate interactions. Cell Biol Int Rep 14 Djaczenko W, Muller M, Benedetto A (1990) Ultra-rapid high pressure freezing in high resolution EM of cell-cell and cell-substrate interactions. Cell Biol Int Rep 14
49.
go back to reference Dubochet J (1995) High-pressure freezing for cryoelectron microscopy. Trends Cell Biol 5(9):366–368CrossRefPubMed Dubochet J (1995) High-pressure freezing for cryoelectron microscopy. Trends Cell Biol 5(9):366–368CrossRefPubMed
50.
go back to reference Hurbain I, Sachse M (2011) The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 103:405–420CrossRefPubMed Hurbain I, Sachse M (2011) The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 103:405–420CrossRefPubMed
51.
go back to reference Paul T, Beveridge T (1994) Preservation of surface lipids and determination of ultrastructure of Mycobacterium kansasii by freeze substitution. Infect Immun 62(5):1542–1550PubMedPubMedCentral Paul T, Beveridge T (1994) Preservation of surface lipids and determination of ultrastructure of Mycobacterium kansasii by freeze substitution. Infect Immun 62(5):1542–1550PubMedPubMedCentral
53.
go back to reference Comolli L, Kundmann M, Downing K (2006) Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging. J Microsc 223:40–52CrossRefPubMed Comolli L, Kundmann M, Downing K (2006) Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging. J Microsc 223:40–52CrossRefPubMed
54.
go back to reference Thomson N, Channon K, Mokhtar N, Staniewicz L et al (2011) Imaging internal features of whole, unfixed bacteria. Scanning 33(2):59–68CrossRefPubMed Thomson N, Channon K, Mokhtar N, Staniewicz L et al (2011) Imaging internal features of whole, unfixed bacteria. Scanning 33(2):59–68CrossRefPubMed
56.
go back to reference Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47CrossRefPubMed Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47CrossRefPubMed
57.
go back to reference Elle I, Olsen L, Pultz D, Rødkær S, Færgeman N (2010) Something worth dyeing for: molecular tools for the dissection of lipid metabolism in Caenorhabditis elegans. FEBS Lett 584:2183–2193CrossRefPubMed Elle I, Olsen L, Pultz D, Rødkær S, Færgeman N (2010) Something worth dyeing for: molecular tools for the dissection of lipid metabolism in Caenorhabditis elegans. FEBS Lett 584:2183–2193CrossRefPubMed
58.
go back to reference Govender T, Ramanna L, Bux R (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511CrossRefPubMed Govender T, Ramanna L, Bux R (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511CrossRefPubMed
59.
go back to reference Dantuma N, Pijnenburg M, Diederen J, Van der Horst D (1998) Electron microscopic visualization of receptor–mediated endocytosis of DiI–labeled lipoproteins by diaminobenzidine photoconversion. J Histochem Cytochem 46(9):1085–1089CrossRefPubMed Dantuma N, Pijnenburg M, Diederen J, Van der Horst D (1998) Electron microscopic visualization of receptor–mediated endocytosis of DiI–labeled lipoproteins by diaminobenzidine photoconversion. J Histochem Cytochem 46(9):1085–1089CrossRefPubMed
60.
go back to reference Cortese K, Diaspro A, Taccheti C (2009) Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections. J Histochem Cytochem 57(12):1103–1112CrossRefPubMedPubMedCentral Cortese K, Diaspro A, Taccheti C (2009) Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections. J Histochem Cytochem 57(12):1103–1112CrossRefPubMedPubMedCentral
61.
go back to reference Staubli W (1963) A new embedding technique for electron microscopy, combining a water soluble epoxy resin (Durcupan) with water insoluble Araldite. J Cell Biol 16:197–199CrossRefPubMedCentral Staubli W (1963) A new embedding technique for electron microscopy, combining a water soluble epoxy resin (Durcupan) with water insoluble Araldite. J Cell Biol 16:197–199CrossRefPubMedCentral
62.
go back to reference Mc Donald K, Webb R (2011) Freeze substitution in 3 hours or less. J Microsc 243(3):227–233CrossRef Mc Donald K, Webb R (2011) Freeze substitution in 3 hours or less. J Microsc 243(3):227–233CrossRef
Metadata
Title
Electron Microscopy Protocols for the Study of Hydrocarbon-Producing and Hydrocarbon-Decomposing Microbes: Classical and Advanced Methods
Authors
Kamna Jhamb
Manfred Auer
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8623_2015_96