Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Electron Transfer Reactions and Redox Catalysis on Gold Nanofilms at Soft Interfaces

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dispute about the exact and correct mechanism of the electron transfer (ET) reactions at liquid–liquid interfaces has lasted for decades. The ET reaction at ITIES was studied experimentally and by computer simulations for a model system. This model system contains \( {\text{Fc}}^{ + } / {\text{Fc}}^{0} \) as an organic soluble electron donor and \( {\text{Fe}}({\text{CN}})_{6}^{3 - /4 - } \) as a water-soluble electron acceptor. The current results indicate that the ET reaction takes place by a potential independent homogeneous reaction in the aqueous phase, while the observed potential dependence stems from that of the concomitant ion transfer reaction of ferrocenium. Functionalization of the interface with metallic nanoparticles significantly improves kinetics of the interfacial reaction by changing reaction mechanism to a bipolar pathway, when NP is acting as an electrically conducting bipolar electrode between the two phases. Therefore, we highlight the catalytic property of a metal nanoparticle film toward heterogeneous electron transfer reactions and explain this property from the point of view of the Fermi level equilibration theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reymond, F., Fermin, D.J., Lee, H.J., Girault, H.H.: Electrochemistry at liquid/liquid interfaces: methodology and potential applications. Electrochim. Acta 45, 2647–2662 (2000)CrossRef Reymond, F., Fermin, D.J., Lee, H.J., Girault, H.H.: Electrochemistry at liquid/liquid interfaces: methodology and potential applications. Electrochim. Acta 45, 2647–2662 (2000)CrossRef
2.
go back to reference Hatay, I., Su, B., Li, F., Partovi-Nia, R., Vrubel, H., Hu, X., Ersoz, M., Girault, H.H.: Hydrogen evolution at liquid-liquid interfaces. Angew. Chemie 48, 5139–5142 (2009)CrossRef Hatay, I., Su, B., Li, F., Partovi-Nia, R., Vrubel, H., Hu, X., Ersoz, M., Girault, H.H.: Hydrogen evolution at liquid-liquid interfaces. Angew. Chemie 48, 5139–5142 (2009)CrossRef
3.
go back to reference Scanlon, M.D., Bian, X., Vrubel, H., Amstutz, V., Schenk, K., Hu, X., Liu, B., Girault, H.H.: Low-Cost Industrially Available Molybdenum Boride and Carbide As “platinum-Like” catalysts for the Hydrogen Evolution Reaction in Biphasic Liquid Systems. Phys. Chem. Chem. Phys. 15, 2847–2857 (2013)CrossRef Scanlon, M.D., Bian, X., Vrubel, H., Amstutz, V., Schenk, K., Hu, X., Liu, B., Girault, H.H.: Low-Cost Industrially Available Molybdenum Boride and Carbide As “platinum-Like” catalysts for the Hydrogen Evolution Reaction in Biphasic Liquid Systems. Phys. Chem. Chem. Phys. 15, 2847–2857 (2013)CrossRef
4.
go back to reference Ge, P., Scanlon, M.D., Peljo, P., Bian, X., Vubrel, H., O’Neill, A., Coleman, J.N., Cantoni, M., Hu, X., Kontturi, K., et al.: Hydrogen evolution across nano-schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chem. Commun. 48, 6484–6486 (2012)CrossRef Ge, P., Scanlon, M.D., Peljo, P., Bian, X., Vubrel, H., O’Neill, A., Coleman, J.N., Cantoni, M., Hu, X., Kontturi, K., et al.: Hydrogen evolution across nano-schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chem. Commun. 48, 6484–6486 (2012)CrossRef
5.
go back to reference Adamiak, W., Jedraszko, J., Krysiak, O., Nogala, W., Hidalgo-Acosta, J.C., Girault, H.H., Opallo, M.: Hydrogen and hydrogen peroxide formation in trifluorotoluene-water biphasic systems. J. Phys. Chem. C 118, 23154–23161 (2014)CrossRef Adamiak, W., Jedraszko, J., Krysiak, O., Nogala, W., Hidalgo-Acosta, J.C., Girault, H.H., Opallo, M.: Hydrogen and hydrogen peroxide formation in trifluorotoluene-water biphasic systems. J. Phys. Chem. C 118, 23154–23161 (2014)CrossRef
6.
go back to reference Peljo, P., Murtomäki, L., Kallio, T., Xu, H.-J., Meyer, M., Gros, C.P., Barbe, J.-M., Girault, H.H., Laasonen, K., Kontturi, K.: Biomimetic oxygen reduction by cofacial porphyrins at a liquid-liquid interface. J. Am. Chem. Soc. 134, 5974–5984 (2012)CrossRef Peljo, P., Murtomäki, L., Kallio, T., Xu, H.-J., Meyer, M., Gros, C.P., Barbe, J.-M., Girault, H.H., Laasonen, K., Kontturi, K.: Biomimetic oxygen reduction by cofacial porphyrins at a liquid-liquid interface. J. Am. Chem. Soc. 134, 5974–5984 (2012)CrossRef
7.
go back to reference Su, B., Hatay, I., Trojánek, A., Samec, Z., Khoury, T., Gros, C.P., Barbe, J.-M., Daina, A., Carrupt, P.-A., Girault, H.H.: Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces. J. Am. Chem. Soc. 132, 2655–2662 (2010)CrossRef Su, B., Hatay, I., Trojánek, A., Samec, Z., Khoury, T., Gros, C.P., Barbe, J.-M., Daina, A., Carrupt, P.-A., Girault, H.H.: Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces. J. Am. Chem. Soc. 132, 2655–2662 (2010)CrossRef
8.
go back to reference Olaya, A.A.J., Schaming, D., Brevet, P.-F., Nagatani, H., Zimmermann, T., Vanicek, J., Xu, H.-J., Gros, C.P., Barbe, J.-M., Girault, H.H.: Self-assembled molecular rafts at liquid|liquid interfaces for four-electron oxygen reduction. J. Am. Chem. Soc. 134, 498–506 (2012)CrossRef Olaya, A.A.J., Schaming, D., Brevet, P.-F., Nagatani, H., Zimmermann, T., Vanicek, J., Xu, H.-J., Gros, C.P., Barbe, J.-M., Girault, H.H.: Self-assembled molecular rafts at liquid|liquid interfaces for four-electron oxygen reduction. J. Am. Chem. Soc. 134, 498–506 (2012)CrossRef
9.
go back to reference Trojánek, A., Langmaier, J., Samec, Z.: Electrocatalysis of the oxygen reduction at a polarised interface between two immiscible electrolyte solutions by electrochemically generated pt particles. Electrochem. Commun. 8, 475–481 (2006)CrossRef Trojánek, A., Langmaier, J., Samec, Z.: Electrocatalysis of the oxygen reduction at a polarised interface between two immiscible electrolyte solutions by electrochemically generated pt particles. Electrochem. Commun. 8, 475–481 (2006)CrossRef
10.
go back to reference Rastgar, S., Deng, H., Cortés-Salazar, F., Scanlon, M.D., Pribil, M., Amstutz, V., Karyakin, A.A., Shahrokhian, S., Girault, H.H.: Oxygen reduction at soft interfaces catalyzed by in situ-generated reduced graphene oxide. Chem. Electro. Chem. 1, 59–63 (2014)CrossRef Rastgar, S., Deng, H., Cortés-Salazar, F., Scanlon, M.D., Pribil, M., Amstutz, V., Karyakin, A.A., Shahrokhian, S., Girault, H.H.: Oxygen reduction at soft interfaces catalyzed by in situ-generated reduced graphene oxide. Chem. Electro. Chem. 1, 59–63 (2014)CrossRef
11.
go back to reference Hatay Patir, I.: Oxygen reduction catalyzed by aniline derivatives at liquid/liquid interfaces. J. Electroanal. Chem. 685, 28–32 (2012)CrossRef Hatay Patir, I.: Oxygen reduction catalyzed by aniline derivatives at liquid/liquid interfaces. J. Electroanal. Chem. 685, 28–32 (2012)CrossRef
12.
go back to reference Samec, Z., Mareček, V., Weber, J., Homolka, D.: Charge transfer between two immiscible electrolyte solutions: part vii. convolution potential sweep voltammetry of Cs + Ion transfer and of electron transfer between ferrocene and hexacyanoferrate(III) ion across the water/nitrobenzene interface. J. Electroanal. Chem. Interfacial Electrochem. 126, 105–119 (1981)CrossRef Samec, Z., Mareček, V., Weber, J., Homolka, D.: Charge transfer between two immiscible electrolyte solutions: part vii. convolution potential sweep voltammetry of Cs + Ion transfer and of electron transfer between ferrocene and hexacyanoferrate(III) ion across the water/nitrobenzene interface. J. Electroanal. Chem. Interfacial Electrochem. 126, 105–119 (1981)CrossRef
13.
go back to reference Samec, Z., Mareček, V., Weber, J.: Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. J. Electroanal. Chem. Interfacial Electrochem. 96, 245–247 (1979)CrossRef Samec, Z., Mareček, V., Weber, J.: Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. J. Electroanal. Chem. Interfacial Electrochem. 96, 245–247 (1979)CrossRef
14.
go back to reference Kihara, S., Suzuki, M., Maeda, K., Ogura, K., Matsui, M., Yoshida, Z.: The electron transfer at a liquid/ liquid interface studied by current-scan polarography at the electrolyte dropping electrode. J. Electroanal. Chem. Interfacial Electrochem. 271, 107–125 (1989)CrossRef Kihara, S., Suzuki, M., Maeda, K., Ogura, K., Matsui, M., Yoshida, Z.: The electron transfer at a liquid/ liquid interface studied by current-scan polarography at the electrolyte dropping electrode. J. Electroanal. Chem. Interfacial Electrochem. 271, 107–125 (1989)CrossRef
15.
go back to reference Hotta, H., Ichikawa, S., Sugihara, T., Osakai, T.: Clarification of the mechanism of interfacial electron-transfer reaction between ferrocene and hexacyanoferrate(iii) by digital simulation of cyclic voltammograms. J. Phys. Chem. B 107, 9717–9725 (2003)CrossRef Hotta, H., Ichikawa, S., Sugihara, T., Osakai, T.: Clarification of the mechanism of interfacial electron-transfer reaction between ferrocene and hexacyanoferrate(iii) by digital simulation of cyclic voltammograms. J. Phys. Chem. B 107, 9717–9725 (2003)CrossRef
16.
go back to reference Tatsumi, H., Katano, H.: Cyclic voltammetry of the electron transfer reaction between Bis(cyclopentadienyl)iron in 1,2-dichloroethane and hexacyanoferrate in water. Anal. Sci. 23, 589–591 (2007)CrossRef Tatsumi, H., Katano, H.: Cyclic voltammetry of the electron transfer reaction between Bis(cyclopentadienyl)iron in 1,2-dichloroethane and hexacyanoferrate in water. Anal. Sci. 23, 589–591 (2007)CrossRef
17.
go back to reference Tsionsky, M., Bard, A.J., Mirkin, M.V.: Scanning electrochemical microscopy. 34. potential dependence of the electron-transfer rate and film formation at the liquid/liquid interface. J. Phys. Chem. 100, 17881–17888 (1996)CrossRef Tsionsky, M., Bard, A.J., Mirkin, M.V.: Scanning electrochemical microscopy. 34. potential dependence of the electron-transfer rate and film formation at the liquid/liquid interface. J. Phys. Chem. 100, 17881–17888 (1996)CrossRef
18.
go back to reference Liu, B., Mirkin, M.V.: Potential-independent electron transfer rate at the liquid/liquid interface. J. Am. Chem. Soc. 121, 8352–8355 (1999)CrossRef Liu, B., Mirkin, M.V.: Potential-independent electron transfer rate at the liquid/liquid interface. J. Am. Chem. Soc. 121, 8352–8355 (1999)CrossRef
19.
go back to reference Shi, C., Anson, F.C.: Simple electrochemical procedure for measuring the rates of electron transfer across liquid/liquid interfaces formed by coating graphite electrodes with thin layers of nitrobenzene. J. Phys. Chem. B 102, 9850–9854 (1998)CrossRef Shi, C., Anson, F.C.: Simple electrochemical procedure for measuring the rates of electron transfer across liquid/liquid interfaces formed by coating graphite electrodes with thin layers of nitrobenzene. J. Phys. Chem. B 102, 9850–9854 (1998)CrossRef
20.
go back to reference Barker, A.L., Unwin, P.R.: Assessment of a recent thin-layer method for measuring the rates of electron transfer across liquid/liquid interfaces. J. Phys. Chem. B 104, 2330–2340 (2000)CrossRef Barker, A.L., Unwin, P.R.: Assessment of a recent thin-layer method for measuring the rates of electron transfer across liquid/liquid interfaces. J. Phys. Chem. B 104, 2330–2340 (2000)CrossRef
21.
go back to reference Zhou, M., Gan, S., Zhong, L., Dong, X., Niu, L.: Which mechanism operates in the electron-transfer process at liquid/liquid interfaces? Phys. Chem. Chem. Phys. 13, 2774–2779 (2011)CrossRef Zhou, M., Gan, S., Zhong, L., Dong, X., Niu, L.: Which mechanism operates in the electron-transfer process at liquid/liquid interfaces? Phys. Chem. Chem. Phys. 13, 2774–2779 (2011)CrossRef
22.
go back to reference Schmickler, W.: Electron-transfer reactions across liquid|liquid interfaces. J. Electroanal. Chem. 428, 123–127 (1997)CrossRef Schmickler, W.: Electron-transfer reactions across liquid|liquid interfaces. J. Electroanal. Chem. 428, 123–127 (1997)CrossRef
23.
go back to reference Samec, Z.: Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochim. Acta 84, 21–28 (2012)CrossRef Samec, Z.: Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochim. Acta 84, 21–28 (2012)CrossRef
24.
go back to reference Ding, Z., Fermı́n, D.J., Brevet, P.-F., Girault, H.H.: Spectroelectrochemical approaches to heterogeneous electron transfer reactions at the polarised water∣1,2-dichloroethane interfaces. J. Electroanal. Chem. 458, 139–148 (1998)CrossRef Ding, Z., Fermı́n, D.J., Brevet, P.-F., Girault, H.H.: Spectroelectrochemical approaches to heterogeneous electron transfer reactions at the polarised water∣1,2-dichloroethane interfaces. J. Electroanal. Chem. 458, 139–148 (1998)CrossRef
25.
go back to reference Hou, B., Laanait, N., Yu, H., Bu, W., Yoon, J., Lin, B., Meron, M., Luo, G., Vanysek, P., Schlossman, M.L.: Ion distributions at the water/1,2-dichloroethane interface: Potential of mean force approach to analyzing x-ray reflectivity and interfacial tension measurements. J. Phys. Chem. B 117, 5365–5378 (2013)CrossRef Hou, B., Laanait, N., Yu, H., Bu, W., Yoon, J., Lin, B., Meron, M., Luo, G., Vanysek, P., Schlossman, M.L.: Ion distributions at the water/1,2-dichloroethane interface: Potential of mean force approach to analyzing x-ray reflectivity and interfacial tension measurements. J. Phys. Chem. B 117, 5365–5378 (2013)CrossRef
26.
go back to reference Yu, H., Yzeiri, I., Hou, B., Chen, C.-H., Bu, W., Vanysek, P., Chen, Y., Lin, B., Král, P., Schlossman, M.L.: Electric field effect on phospholipid monolayers at an aqueous-organic liquid–liquid interface. J. Phys. Chem. B 119, 9319–9334 (2015)CrossRef Yu, H., Yzeiri, I., Hou, B., Chen, C.-H., Bu, W., Vanysek, P., Chen, Y., Lin, B., Král, P., Schlossman, M.L.: Electric field effect on phospholipid monolayers at an aqueous-organic liquid–liquid interface. J. Phys. Chem. B 119, 9319–9334 (2015)CrossRef
27.
go back to reference Mcarthur, E.A., Eisenthal, K.B., Ultrafast excited-state electron transfer at an organic liquid/ aqueous interface. Science 80, 1068–1069 (2006)CrossRef Mcarthur, E.A., Eisenthal, K.B., Ultrafast excited-state electron transfer at an organic liquid/ aqueous interface. Science 80, 1068–1069 (2006)CrossRef
28.
go back to reference Ibañez, D., Plana, D., Heras, A., Fermín, D.J., Colina, A.: Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved raman spectroelectrochemistry. Electrochem. Commun. 54, 14–17 (2015)CrossRef Ibañez, D., Plana, D., Heras, A., Fermín, D.J., Colina, A.: Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved raman spectroelectrochemistry. Electrochem. Commun. 54, 14–17 (2015)CrossRef
29.
go back to reference Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Interfacial redox catalysis on gold nanofilms at soft interfaces. ACS Nano 9, 6565–6575 (2015)CrossRef Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Interfacial redox catalysis on gold nanofilms at soft interfaces. ACS Nano 9, 6565–6575 (2015)CrossRef
30.
go back to reference Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Gold nanofilm redox catalysis for oxygen reduction at soft interfaces. Electrochim. Acta 197, 362–373 (2016)CrossRef Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Gold nanofilm redox catalysis for oxygen reduction at soft interfaces. Electrochim. Acta 197, 362–373 (2016)CrossRef
31.
go back to reference Volkov, A.G., Interfacial Catalysis. Taylor and Francis Ltd., UK (2002) Volkov, A.G., Interfacial Catalysis. Taylor and Francis Ltd., UK (2002)
32.
go back to reference Samec, Z., Mareček, V., Weber, J.: Charge transfer between two immiscible electrolyte solutions. J. Electroanal. Chem. Interfacial Electrochem. 103, 11–18 (1979)CrossRef Samec, Z., Mareček, V., Weber, J.: Charge transfer between two immiscible electrolyte solutions. J. Electroanal. Chem. Interfacial Electrochem. 103, 11–18 (1979)CrossRef
33.
go back to reference Aoki, K.J., Yu, J., Chen, J., Nishiumi, T.: Participation in self-emulsification by oil-thin film voltammetry. Int. J. Chem. 6, 73 (2014)CrossRef Aoki, K.J., Yu, J., Chen, J., Nishiumi, T.: Participation in self-emulsification by oil-thin film voltammetry. Int. J. Chem. 6, 73 (2014)CrossRef
34.
go back to reference Daniele, S., Baldo, M.A., Bragato, C.: A steady-state voltammetric investigation on the oxidation of ferrocene in ethanol–water mixtures. Electrochem. Commun. 1, 37–41 (1999)CrossRef Daniele, S., Baldo, M.A., Bragato, C.: A steady-state voltammetric investigation on the oxidation of ferrocene in ethanol–water mixtures. Electrochem. Commun. 1, 37–41 (1999)CrossRef
35.
go back to reference Fermin, D.J., Lahtinen, R.: In: Volkov, A.G. (ed.) Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications. Marcel Dekker Inc., New York (2001) Fermin, D.J., Lahtinen, R.: In: Volkov, A.G. (ed.) Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications. Marcel Dekker Inc., New York (2001)
36.
go back to reference Plana, D., Jones, F.G.E., Dryfe, R.A.W.: The voltammetric response of bipolar cells: reversible electron transfer. J. Electroanal. Chem. 646, 107–113 (2010)CrossRef Plana, D., Jones, F.G.E., Dryfe, R.A.W.: The voltammetric response of bipolar cells: reversible electron transfer. J. Electroanal. Chem. 646, 107–113 (2010)CrossRef
37.
go back to reference Mareček, V., Samec, Z., Weber, J.: The dependence of the electrochemical charge-transfer coefficient on the electrode potential. J. Electroanal. Chem. Interfacial Electrochem. 94, 169–185 (1978)CrossRef Mareček, V., Samec, Z., Weber, J.: The dependence of the electrochemical charge-transfer coefficient on the electrode potential. J. Electroanal. Chem. Interfacial Electrochem. 94, 169–185 (1978)CrossRef
38.
go back to reference Hatay, I., Su, B., Li, F., Méndez, M.A., Khoury, T., Gros, C.P., Barbe, J.-M., Ersoz, M., Samec, Z., Girault, H.H.: Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. J. Am. Chem. Soc. 131, 13453–13459 (2009)CrossRef Hatay, I., Su, B., Li, F., Méndez, M.A., Khoury, T., Gros, C.P., Barbe, J.-M., Ersoz, M., Samec, Z., Girault, H.H.: Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. J. Am. Chem. Soc. 131, 13453–13459 (2009)CrossRef
39.
go back to reference Peljo, P., Smirnov, E., Girault, H.H.: Heterogeneous versus homogeneous electron transfer reactions at liquid–liquid interfaces: the wrong question? J. Electroanal. Chem. 779, 187–198 (2016)CrossRef Peljo, P., Smirnov, E., Girault, H.H.: Heterogeneous versus homogeneous electron transfer reactions at liquid–liquid interfaces: the wrong question? J. Electroanal. Chem. 779, 187–198 (2016)CrossRef
40.
go back to reference Campbell, S.A., Peter, L.M.: The effect of [K +] on the heterogeneous rate constant for the [Fe(CN)6]3 −/[Fe(CN)6]4 − redox couple investigated by A.c. impedance spectroscope. J. Electroanal. Chem. 364, 257–260 (1994)CrossRef Campbell, S.A., Peter, L.M.: The effect of [K +] on the heterogeneous rate constant for the [Fe(CN)6]3 −/[Fe(CN)6]4 − redox couple investigated by A.c. impedance spectroscope. J. Electroanal. Chem. 364, 257–260 (1994)CrossRef
41.
go back to reference Singh, A., Chowdhury, D.R., Paul, A.: A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 139, 5747–5754 (2014)CrossRef Singh, A., Chowdhury, D.R., Paul, A.: A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 139, 5747–5754 (2014)CrossRef
42.
go back to reference Hurvois, J.P., Moinet, C.: Reactivity of ferrocenium cations with molecular oxygen in polar organic solvents: decomposition, redox reactions and stabilization. J. Organomet. Chem. 690, 1829–1839 (2005)CrossRef Hurvois, J.P., Moinet, C.: Reactivity of ferrocenium cations with molecular oxygen in polar organic solvents: decomposition, redox reactions and stabilization. J. Organomet. Chem. 690, 1829–1839 (2005)CrossRef
43.
go back to reference Zotti, G., Schiavon, G., Zecchin, S., Favretto, D.: Dioxygen-decomposition of ferrocenium molecules in acetonitrile: the nature of the electrode-fouling films during ferrocene electrochemistry. J. Electroanal. Chem. 456, 217–221 (1998)CrossRef Zotti, G., Schiavon, G., Zecchin, S., Favretto, D.: Dioxygen-decomposition of ferrocenium molecules in acetonitrile: the nature of the electrode-fouling films during ferrocene electrochemistry. J. Electroanal. Chem. 456, 217–221 (1998)CrossRef
44.
go back to reference Quinn, B., Lahtinen, R., Murtomäki, L., Kontturi, K.: Electron transfer at micro liquid–liquid interfaces. Electrochim. Acta 44, 47–57 (1998)CrossRef Quinn, B., Lahtinen, R., Murtomäki, L., Kontturi, K.: Electron transfer at micro liquid–liquid interfaces. Electrochim. Acta 44, 47–57 (1998)CrossRef
45.
go back to reference Quinn, B., Kontturi, K.: Aspects of electron transfer at ITIES. J. Electroanal. Chem. 483, 124–134 (2000)CrossRef Quinn, B., Kontturi, K.: Aspects of electron transfer at ITIES. J. Electroanal. Chem. 483, 124–134 (2000)CrossRef
46.
go back to reference Bunton, C.A., Cerichelli, G.: Micellar effects upon electron transfer from ferrocenes. Int. J. Chem. Kinet. 12, 519–533 (1980)CrossRef Bunton, C.A., Cerichelli, G.: Micellar effects upon electron transfer from ferrocenes. Int. J. Chem. Kinet. 12, 519–533 (1980)CrossRef
47.
go back to reference Tatsumi, H., Katano, H.: Voltammetric study of the interfacial electron transfer between Bis(cyclopentadienyl)iron in 1,2-dichloroethane and in nitrobenzene and hexacyanoferrate in water. J. Electroanal. Chem. 592, 121–125 (2006)CrossRef Tatsumi, H., Katano, H.: Voltammetric study of the interfacial electron transfer between Bis(cyclopentadienyl)iron in 1,2-dichloroethane and in nitrobenzene and hexacyanoferrate in water. J. Electroanal. Chem. 592, 121–125 (2006)CrossRef
48.
go back to reference Zahl, A., Van Eldik, R., Swaddle, T.W.: Cation-independent electron transfer between ferricyanide and ferrocyanide ions in aqueous solution. Inorg. Chem. 41, 757–764 (2002)CrossRef Zahl, A., Van Eldik, R., Swaddle, T.W.: Cation-independent electron transfer between ferricyanide and ferrocyanide ions in aqueous solution. Inorg. Chem. 41, 757–764 (2002)CrossRef
49.
go back to reference Kershaw, M.R., Prue, J.E.: Specific cation effects on rate of reaction between persulphate and ferrocyanide ions. Trans. Faraday Soc. 63, 1198–1207 (1967)CrossRef Kershaw, M.R., Prue, J.E.: Specific cation effects on rate of reaction between persulphate and ferrocyanide ions. Trans. Faraday Soc. 63, 1198–1207 (1967)CrossRef
50.
go back to reference Strutwolf, J., Barker, A.L., Gonsalves, M., Caruana, D.J., Unwin, P.R., Williams, D.E., Webster, J.R.: Probing liquid∣liquid interfaces using neutron reflection measurements and scanning electrochemical microscopy. J. Electroanal. Chem. 483, 163–173 (2000)CrossRef Strutwolf, J., Barker, A.L., Gonsalves, M., Caruana, D.J., Unwin, P.R., Williams, D.E., Webster, J.R.: Probing liquid∣liquid interfaces using neutron reflection measurements and scanning electrochemical microscopy. J. Electroanal. Chem. 483, 163–173 (2000)CrossRef
51.
go back to reference Schaming, D., Hojeij, M., Younan, N., Nagatani, H., Lee, H.J., Girault, H.H.: Photocurrents at polarized liquid|liquid interfaces enhanced by a gold nanoparticle film. Phys. Chem. Chem. Phys. 13, 17704–17711 (2011)CrossRef Schaming, D., Hojeij, M., Younan, N., Nagatani, H., Lee, H.J., Girault, H.H.: Photocurrents at polarized liquid|liquid interfaces enhanced by a gold nanoparticle film. Phys. Chem. Chem. Phys. 13, 17704–17711 (2011)CrossRef
52.
go back to reference Gregoire, G.: Porphyr’ Infinity. EPFL (2014) Gregoire, G.: Porphyr’ Infinity. EPFL (2014)
Metadata
Title
Electron Transfer Reactions and Redox Catalysis on Gold Nanofilms at Soft Interfaces
Author
Dr. Evgeny Smirnov
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77914-0_7

Premium Partners