Skip to main content
Top
Published in: Journal of Materials Science 13/2021

01-02-2021 | Computation & theory

Electronic and magnetic properties of yttria-stabilized zirconia (6.7 mol% in Y2O3) doped with Er3+ ions from first-principle computations

Authors: Hassan Denawi, Panaghiotis Karamanis, Michel Rérat

Published in: Journal of Materials Science | Issue 13/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Yttria-stabilized zirconia (YSZ) is a widely recognized ceramic of distinct electrical, mechanical and optical properties. Although YSZ is an intrinsically paramagnetic solid, it could potentially transform to a magnetic semiconductor by incorporating in its crystalline structure isolated atoms bearing unpaired valence electrons. Based on this hypothesis and motivated by the latest advances on YSZ doped with rare-earth atoms, in the current article we report on the electronic and magnetic properties of YSZ doped with Er3+ ([Xe]4f116s0) cations that comprise three “unpaired” 4f electrons in their ground state electronic configuration. Our computations, conducted on YSZ 6.7 mol% in Y2O3 doped with two different Er3+ concentrations (3.2 and 6.7 mol% in Er2O3), expose that Er3+:YSZ is a stable antiferromagnetic semiconductor (\(S=\frac{3}{2}\) per Er+3) bearing a rather wide band gap of about 5 eV. All results presented and discussed in current report rely on spin–polarized density functional theory (DFT) within the spin resolved generalized gradient approximation (SGGA) for the pure Perdew, Burke and Ernzerhof exchange–correlation functional (PBE) and hybrid version widely referred as PBE0. According to our knowledge, this is the first time that the magnetic properties of Er3+: YSZ materials are reported for any Er+3 concentration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pearton SJ, Abernathy CR, Norton DP et al (2003) Advances in wide bandgap materials for semiconductor spintronics. Mater Sci Eng R Rep 40:137–168 Pearton SJ, Abernathy CR, Norton DP et al (2003) Advances in wide bandgap materials for semiconductor spintronics. Mater Sci Eng R Rep 40:137–168
2.
go back to reference Kikkawa JM, Awschalom DD (2000) All-optical magnetic resonance in semiconductors. Science 287:473–476 Kikkawa JM, Awschalom DD (2000) All-optical magnetic resonance in semiconductors. Science 287:473–476
3.
go back to reference Pearton SJ, Abernathy CR, Overberg ME et al (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13 Pearton SJ, Abernathy CR, Overberg ME et al (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13
4.
go back to reference Harima H (2004) Raman studies on spintronics materials based on wide bandgap semiconductors. J Phys Condens Matter 16:S5653 Harima H (2004) Raman studies on spintronics materials based on wide bandgap semiconductors. J Phys Condens Matter 16:S5653
5.
go back to reference Akinaga H, Ohno H (2002) Semiconductor spintronics. IEEE Trans Nanotechnol 1:19–31 Akinaga H, Ohno H (2002) Semiconductor spintronics. IEEE Trans Nanotechnol 1:19–31
6.
go back to reference Jayachandraiah C, Sivakumar K, Divya A, Krishnaiah G (2016) Erbium induced magnetic properties of Er/ZnO nanoparticles. AIP Conf Proc 1731:050116 Jayachandraiah C, Sivakumar K, Divya A, Krishnaiah G (2016) Erbium induced magnetic properties of Er/ZnO nanoparticles. AIP Conf Proc 1731:050116
7.
go back to reference Jungwirth T, Sinova J, Manchon A et al (2018) The multiple directions of antiferromagnetic spintronics. Nat Phys 14:200–203 Jungwirth T, Sinova J, Manchon A et al (2018) The multiple directions of antiferromagnetic spintronics. Nat Phys 14:200–203
8.
go back to reference Wolf SA, Awschalom DD, Buhrman RA et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495 Wolf SA, Awschalom DD, Buhrman RA et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495
9.
go back to reference Pearton SJ, Abernathy CR, Thaler GT et al (2004) Wide bandgap GaN-based semiconductors for spintronics. J Phys: Condens Matter 16:209–245 Pearton SJ, Abernathy CR, Thaler GT et al (2004) Wide bandgap GaN-based semiconductors for spintronics. J Phys: Condens Matter 16:209–245
10.
go back to reference Grün H, Berer T, Bauer-Marschallinger J et al (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410 Grün H, Berer T, Bauer-Marschallinger J et al (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410
11.
go back to reference Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64:29–64 Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64:29–64
12.
go back to reference Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858 Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858
13.
go back to reference Ahn CH, Triscone JM, Mannhart J (2003) Electric field effect in correlated oxide systems. Nature 424:1015–1018 Ahn CH, Triscone JM, Mannhart J (2003) Electric field effect in correlated oxide systems. Nature 424:1015–1018
14.
go back to reference Furdyna JK (1986) Diluted magnetic semiconductors: Issues and opportunities. J Vac Sci Technol A 4:2002–2009 Furdyna JK (1986) Diluted magnetic semiconductors: Issues and opportunities. J Vac Sci Technol A 4:2002–2009
15.
go back to reference Hota RL, Tripathi GS, Misra PK (1994) Theory of magnetization in IV-VI based diluted magnetic semiconductors. J Appl Phys 75:5737–5739 Hota RL, Tripathi GS, Misra PK (1994) Theory of magnetization in IV-VI based diluted magnetic semiconductors. J Appl Phys 75:5737–5739
16.
go back to reference Berciu M, Jankó B (2003) Nanoscale Zeeman localization of charge carriers in diluted magnetic semiconductor-permalloy hybrids. Phys Rev Lett 90:4 Berciu M, Jankó B (2003) Nanoscale Zeeman localization of charge carriers in diluted magnetic semiconductor-permalloy hybrids. Phys Rev Lett 90:4
17.
go back to reference Samanta A, Goswami MN, Mahapatra PK (2018) Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature. J Alloy Compd 730:399–407 Samanta A, Goswami MN, Mahapatra PK (2018) Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature. J Alloy Compd 730:399–407
18.
go back to reference Gu G, Zhao G, Lin C et al (2018) Asperomagnetic order in diluted magnetic semiconductor (Ba, Na)(Zn, Mn)2As2. Appl Phys Lett 112:032402 Gu G, Zhao G, Lin C et al (2018) Asperomagnetic order in diluted magnetic semiconductor (Ba, Na)(Zn, Mn)2As2. Appl Phys Lett 112:032402
19.
go back to reference Heiroth S, Ghisleni R, Lippert T et al (2011) Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition. Acta Mater 59:2330–2340 Heiroth S, Ghisleni R, Lippert T et al (2011) Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition. Acta Mater 59:2330–2340
20.
go back to reference Ostanin S, Craven AJ, McComb DW et al (2000) Effect of relaxation on the oxygen K-edge electron energy-loss near-edge structure in yttria-stabilized zirconia. Phys Rev B Condens Matter Mater Phys 62:14728–14735 Ostanin S, Craven AJ, McComb DW et al (2000) Effect of relaxation on the oxygen K-edge electron energy-loss near-edge structure in yttria-stabilized zirconia. Phys Rev B Condens Matter Mater Phys 62:14728–14735
21.
go back to reference Götsch T, Bertel E, Menzel A et al (2018) Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys Rev Mater 2:1–15 Götsch T, Bertel E, Menzel A et al (2018) Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys Rev Mater 2:1–15
22.
go back to reference Xia X, Oldman R, Catlow R (2009) Computational modeling study of bulk and surface of yttria-stabilized cubic zirconia. Chem Mater 21:3576–3585 Xia X, Oldman R, Catlow R (2009) Computational modeling study of bulk and surface of yttria-stabilized cubic zirconia. Chem Mater 21:3576–3585
23.
go back to reference Nicoloso N, Lobert A, Leibold B (1992) Optical absorption studies of tetragonal yttria-stabilized zirconia. Sens Actuators 8:253–256 Nicoloso N, Lobert A, Leibold B (1992) Optical absorption studies of tetragonal yttria-stabilized zirconia. Sens Actuators 8:253–256
24.
go back to reference Parkes MA, Tompsett DA, D’Avezac M et al (2016) The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study. Phys Chem Chem Phys 18:31277–31285 Parkes MA, Tompsett DA, D’Avezac M et al (2016) The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study. Phys Chem Chem Phys 18:31277–31285
25.
go back to reference Marcaud G, Matzen S, Alonso-Ramos C et al (2018) High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications. Phys Rev Mater 2:35202 Marcaud G, Matzen S, Alonso-Ramos C et al (2018) High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications. Phys Rev Mater 2:35202
26.
go back to reference Marcaud G, Serna S, Panaghiotis K et al (2020) Third-order nonlinear optical susceptibility of crystalline oxide yttria-stabilized zirconia. Photonics Res 8:110–120 Marcaud G, Serna S, Panaghiotis K et al (2020) Third-order nonlinear optical susceptibility of crystalline oxide yttria-stabilized zirconia. Photonics Res 8:110–120
27.
go back to reference Chislov AS, Borik MA, Kulebyakin AV et al (2019) Comparison of mechanical properties of zirconia crystals partially stabilized with yttria and gadolinia. J Phys Conf Ser 1347:012059 Chislov AS, Borik MA, Kulebyakin AV et al (2019) Comparison of mechanical properties of zirconia crystals partially stabilized with yttria and gadolinia. J Phys Conf Ser 1347:012059
28.
go back to reference Bogicevic A, Wolverton C (2003) Nature and strength of defect interactions in cubic stabilized zirconia. Phys Rev B Condens Matter Mater Phys 67:024106 Bogicevic A, Wolverton C (2003) Nature and strength of defect interactions in cubic stabilized zirconia. Phys Rev B Condens Matter Mater Phys 67:024106
29.
go back to reference Stapper G, Bernasconi M, Nicoloso N, Parrinello M (1999) Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia. Phys Rev B Condens Matter Mater Phys 59:797–810 Stapper G, Bernasconi M, Nicoloso N, Parrinello M (1999) Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia. Phys Rev B Condens Matter Mater Phys 59:797–810
30.
go back to reference Qin R, Zeng HC (2019) Confined transformation of UiO-66 nanocrystals to yttria-stabilized zirconia with hierarchical pore structures for catalytic applications. Adv Func Mater 29:1903264 Qin R, Zeng HC (2019) Confined transformation of UiO-66 nanocrystals to yttria-stabilized zirconia with hierarchical pore structures for catalytic applications. Adv Func Mater 29:1903264
32.
go back to reference Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52:23–32 Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52:23–32
33.
go back to reference Dixon JM, LaGrange LD, Merten U et al (1963) Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 110:276 Dixon JM, LaGrange LD, Merten U et al (1963) Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 110:276
34.
go back to reference Yoshimura M (1988) Phase stability of zirconia. Am Ceram Soc Bull 67:1950–1955 Yoshimura M (1988) Phase stability of zirconia. Am Ceram Soc Bull 67:1950–1955
35.
go back to reference Cross M, Varhue W (2003) Visible light emission from erbium doped yttria stabilized zirconia. Mater Res Soc Symp Proc 789:239–244 Cross M, Varhue W (2003) Visible light emission from erbium doped yttria stabilized zirconia. Mater Res Soc Symp Proc 789:239–244
36.
go back to reference Greenberg E, Katz G, Reisfeld R et al (1982) Radiative transition probabilities of Er3+ in yttria stabilized cubic zirconia crystals. J Chem Phys 77:4797–4803 Greenberg E, Katz G, Reisfeld R et al (1982) Radiative transition probabilities of Er3+ in yttria stabilized cubic zirconia crystals. J Chem Phys 77:4797–4803
37.
go back to reference Yugami H, Koike A, Ishigame M, Suemoto T (1991) Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. Phys Rev B 44:9214 Yugami H, Koike A, Ishigame M, Suemoto T (1991) Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. Phys Rev B 44:9214
38.
go back to reference Merino RI, Orera VM, Cases R, Chamarro MA (1991) Spectroscopic characterization of Er3+ in stabilized zirconia single crystals. J Phys Condens Matter 3:8491–8502 Merino RI, Orera VM, Cases R, Chamarro MA (1991) Spectroscopic characterization of Er3+ in stabilized zirconia single crystals. J Phys Condens Matter 3:8491–8502
39.
go back to reference Arashi H (1972) Absorption spectrum of Er3+ ions in cubic zirconia. Physica Status Solidi (a) 10:107–112 Arashi H (1972) Absorption spectrum of Er3+ ions in cubic zirconia. Physica Status Solidi (a) 10:107–112
40.
go back to reference Ryabochkina PA, Sidorova NV, Ushakov SN, Lomonova EE (2014) Spectroscopic properties of erbium-doped yttria-stabilised zirconia crystals. Quantum Electron 44:135–137 Ryabochkina PA, Sidorova NV, Ushakov SN, Lomonova EE (2014) Spectroscopic properties of erbium-doped yttria-stabilised zirconia crystals. Quantum Electron 44:135–137
41.
go back to reference Savoini B, Muoz-Santiuste JE, González R et al (2001) Upconversion luminescence of Er3+-doped YSZ single crystals. J Alloy Compd 323–324:748–752 Savoini B, Muoz-Santiuste JE, González R et al (2001) Upconversion luminescence of Er3+-doped YSZ single crystals. J Alloy Compd 323–324:748–752
42.
go back to reference Ruiz-Caridad A, Marcaud G, Ramirez JM et al (2020) Erbium-doped yttria-stabilised zirconia thin films grown by pulsed laser deposition for photonic applications. Thin Solid Films 693:137706 Ruiz-Caridad A, Marcaud G, Ramirez JM et al (2020) Erbium-doped yttria-stabilised zirconia thin films grown by pulsed laser deposition for photonic applications. Thin Solid Films 693:137706
43.
go back to reference Wang X, Tan X, Xu S et al (2020) Preparation and up-conversion luminescence of Er-doped yttria stabilized zirconia single crystals. J Lumin 219:116896 Wang X, Tan X, Xu S et al (2020) Preparation and up-conversion luminescence of Er-doped yttria stabilized zirconia single crystals. J Lumin 219:116896
44.
go back to reference Ruiz-Caridad A, Collin S, Alonso-Ramos C et al (2020) Erbium-doped yttria-stabilized zirconia thin layers for photonic applications. IEEE J Quantum Electron 56:1–7 Ruiz-Caridad A, Collin S, Alonso-Ramos C et al (2020) Erbium-doped yttria-stabilized zirconia thin layers for photonic applications. IEEE J Quantum Electron 56:1–7
45.
go back to reference Lin T, Zhang X, Xu J et al (2013) Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films. Appl Phys Lett 103:181906 Lin T, Zhang X, Xu J et al (2013) Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films. Appl Phys Lett 103:181906
46.
go back to reference Wu J, Coffer JL (2007) Strongly emissive erbium-doped tin oxide nanofibers derived from sol gel/electrospinning methods. J Phys Chem C 111:16088–16091 Wu J, Coffer JL (2007) Strongly emissive erbium-doped tin oxide nanofibers derived from sol gel/electrospinning methods. J Phys Chem C 111:16088–16091
47.
go back to reference Aleksanyan E, Kirm M, Feldbach E et al (2017) Luminescence properties of Er3+ doped zirconia thin films and ZrO2/Er2O3 nanolaminates grown by atomic layer deposition. Opt Mater 74:27–33 Aleksanyan E, Kirm M, Feldbach E et al (2017) Luminescence properties of Er3+ doped zirconia thin films and ZrO2/Er2O3 nanolaminates grown by atomic layer deposition. Opt Mater 74:27–33
48.
go back to reference Parkes MA, Refson K, Davezac M et al (2015) Chemical descriptors of yttria-stabilized zirconia at low defect concentration: an ab initio study. J Phys Chem A 119:6412–6420 Parkes MA, Refson K, Davezac M et al (2015) Chemical descriptors of yttria-stabilized zirconia at low defect concentration: an ab initio study. J Phys Chem A 119:6412–6420
49.
go back to reference Ioffe AI, Rutman DS, Karpachov SV (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23:141–142 Ioffe AI, Rutman DS, Karpachov SV (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23:141–142
50.
go back to reference Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979 Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979
51.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868 Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868
52.
go back to reference Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775 Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775
53.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186 Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186
54.
go back to reference Kresse G, Furthmiiller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50 Kresse G, Furthmiiller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50
55.
go back to reference Pack JD, Monkhorst HJ (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192 Pack JD, Monkhorst HJ (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192
56.
go back to reference Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford
57.
go back to reference Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360 Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360
58.
go back to reference Allouche A (2012) Software News and Updates Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182 Allouche A (2012) Software News and Updates Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182
59.
go back to reference Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J Phys Condens Matter 9:767–808 Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J Phys Condens Matter 9:767–808
60.
go back to reference Peng H, Scanlon DO, Stevanovic V et al (2013) Convergence of density and hybrid functional defect calculations for compound semiconductors. Phys Rev B Conden Matter Mater Phys 88:1–7 Peng H, Scanlon DO, Stevanovic V et al (2013) Convergence of density and hybrid functional defect calculations for compound semiconductors. Phys Rev B Conden Matter Mater Phys 88:1–7
61.
go back to reference Denawi H, Koudia M, Hayn R et al (2018) On-surface synthesis of spin crossover polymeric chains. J Phys Chem C 122:15033–15040 Denawi H, Koudia M, Hayn R et al (2018) On-surface synthesis of spin crossover polymeric chains. J Phys Chem C 122:15033–15040
62.
go back to reference Denawi H, Abel M, Hayn R (2019) Magnetic polymer chains of transition metal atoms and zwitterionic quinone. J Phys Chem C 123:4582–4589 Denawi H, Abel M, Hayn R (2019) Magnetic polymer chains of transition metal atoms and zwitterionic quinone. J Phys Chem C 123:4582–4589
63.
go back to reference Njifon IC, Bertolus M, Hayn R, Freyss M (2018) Electronic structure investigation of the bulk properties of uranium-plutonium mixed oxides (U, Pu)O2. Inorg Chem 57:10974–10983 Njifon IC, Bertolus M, Hayn R, Freyss M (2018) Electronic structure investigation of the bulk properties of uranium-plutonium mixed oxides (U, Pu)O2. Inorg Chem 57:10974–10983
64.
go back to reference Saoudi H, Denawi H, Benali A et al (2018) Preparation and electron correlation effects of the perovskite La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0 ≤ x ≤ 0.20). Solid State Ionics 324:157–162 Saoudi H, Denawi H, Benali A et al (2018) Preparation and electron correlation effects of the perovskite La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0 ≤ x ≤ 0.20). Solid State Ionics 324:157–162
65.
go back to reference Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:5467–5471 Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:5467–5471
66.
go back to reference Dovesi R, Erba A, Orlando R et al (2018) Quantum-mechanical condensed matter simulations with crystal. Wiley Interdiscip Rev Comput Mol Sci 8:e1360 Dovesi R, Erba A, Orlando R et al (2018) Quantum-mechanical condensed matter simulations with crystal. Wiley Interdiscip Rev Comput Mol Sci 8:e1360
67.
go back to reference French RH, Glass SJ, Ohuchi FS et al (1994) Experimental anti theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B 49:5133 French RH, Glass SJ, Ohuchi FS et al (1994) Experimental anti theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B 49:5133
68.
go back to reference Králik B, Chang EK, Louie SG (1998) Structural properties and quasiparticle band structure of zirconia. Phys Rev B Condens Matter Mater Phys 57:7027–7036 Králik B, Chang EK, Louie SG (1998) Structural properties and quasiparticle band structure of zirconia. Phys Rev B Condens Matter Mater Phys 57:7027–7036
69.
go back to reference Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569 Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569
70.
go back to reference Ricca C, Ringuedé A, Cassir M et al (2015) Revealing the properties of the cubic ZrO2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y2O3. RSC Adv 5:13941–13951 Ricca C, Ringuedé A, Cassir M et al (2015) Revealing the properties of the cubic ZrO2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y2O3. RSC Adv 5:13941–13951
71.
go back to reference Mohamad R, Chen J, Ruterana P (2020) The effect of N-vacancy and in aggregation on the properties of InAlN. Comput Mater Sci 172:109384 Mohamad R, Chen J, Ruterana P (2020) The effect of N-vacancy and in aggregation on the properties of InAlN. Comput Mater Sci 172:109384
Metadata
Title
Electronic and magnetic properties of yttria-stabilized zirconia (6.7 mol% in Y2O3) doped with Er3+ ions from first-principle computations
Authors
Hassan Denawi
Panaghiotis Karamanis
Michel Rérat
Publication date
01-02-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05793-6

Other articles of this Issue 13/2021

Journal of Materials Science 13/2021 Go to the issue

High-Temperature Capillarity

Role of Si in the wetting of TiC by Al

Premium Partners