Skip to main content
Top
Published in: Journal of Electronic Materials 3/2021

04-01-2021 | Original Research Article

Electronic Properties of Short Polynucleotides Studied Using Schottky Junctions

Authors: Souhad M. A. Daraghma, Sara Talebi, Vengadesh Periasamy

Published in: Journal of Electronic Materials | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deoxyribonucleic acid (DNA), the blueprint of life, has attracted recent attention concerning its potential applications in electronics. In order to realize these applications, charge transfer through the molecule has been subjected to numerous experimental and theoretical studies in the last few decades. As a result of varying experimental conditions, different electrical behaviors have been observed. The sensitive structure of DNA is influenced by extreme environmental conditions as shown in common characterization techniques. Finding a simple yet quantitative accurate method is more efficient for understanding the electronic properties of DNA. In this work, we have employed DNA-specific Schottky junctions integrated within a printed circuit board (PCB) to investigate the properties of the four nitrogenous bases of guanine (G), thymine (T), cytosine (C) and adenine (A) in short polynucleotide form. Acquisition and analysis of the current–voltage (IV) profiles allowed measurement of selected solid-state parameters corresponding to each of the DNA polynucleotide base. While observing characteristic IV profiles and parameters, significantly closer and higher conductive profiles were demonstrated for the purines (A and G) as compared to the highly similar profiles of the pyrimidines (T and C) which is in agreement with previous observations. The observations obtained from this work may, therefore, provide a clear conceptualization of the role of each nitrogenous base in charge transfer process through the DNA molecule and allow better understanding of the fingerprinting electronic properties of each base.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, and K. Roberts, Molecular Cell Biology (New York: Garland Science, 2008), p. 3. B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, and K. Roberts, Molecular Cell Biology (New York: Garland Science, 2008), p. 3.
2.
go back to reference M. Di Ventra and M. Zwolak, J. Nanosci. Nanotechnol. 2, 475 (2004). M. Di Ventra and M. Zwolak, J. Nanosci. Nanotechnol. 2, 475 (2004).
4.
go back to reference D.Y. Zang and J.G. Grote, SPIE.ORG. Photonic Mater. Devices IX. 64700A64701-64710 (2007). D.Y. Zang and J.G. Grote, SPIE.ORG. Photonic Mater. Devices IX. 64700A64701-64710 (2007).
7.
go back to reference A.J. Storm, J. van Noort, S. de Vries, and C. Dekker, Appl. Phys. Lett. 79, 3881 (2001).CrossRef A.J. Storm, J. van Noort, S. de Vries, and C. Dekker, Appl. Phys. Lett. 79, 3881 (2001).CrossRef
8.
go back to reference D. Porath, A. Bezryadin, S. De Vries, and C. Dekker, Nature 403, 635 (2000).CrossRef D. Porath, A. Bezryadin, S. De Vries, and C. Dekker, Nature 403, 635 (2000).CrossRef
9.
go back to reference A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A.S. Vedeneev, J.S. Lee, and J.M. Xu, Phys. Rev. Lett. 86, 3670 (2001).CrossRef A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A.S. Vedeneev, J.S. Lee, and J.M. Xu, Phys. Rev. Lett. 86, 3670 (2001).CrossRef
10.
11.
go back to reference Y.A. Mantz, F.L. Gervasio, T. Laino, and M. Parrinello, Phys. Rev. Lett. 99, 058104 (2007).CrossRef Y.A. Mantz, F.L. Gervasio, T. Laino, and M. Parrinello, Phys. Rev. Lett. 99, 058104 (2007).CrossRef
13.
go back to reference R.A. Marcus and N. Sutin, Biochim. Biophys. Acta Rev. Bioenerg. 811, 265 (1985).CrossRef R.A. Marcus and N. Sutin, Biochim. Biophys. Acta Rev. Bioenerg. 811, 265 (1985).CrossRef
14.
go back to reference J.K. Barton, E.D. Olmon, and P.A. Sontz, Coord. Chem. Rev. 255, 619 (2011).CrossRef J.K. Barton, E.D. Olmon, and P.A. Sontz, Coord. Chem. Rev. 255, 619 (2011).CrossRef
15.
17.
go back to reference I. Kratochvílová, K. Král, M. Bunček, A. Víšková, S. Nešpůrek, A. Kochalska, T. Todorciuc, M. Weiter, and B. Schneider, Biophys. Chem. 138, 3 (2008).CrossRef I. Kratochvílová, K. Král, M. Bunček, A. Víšková, S. Nešpůrek, A. Kochalska, T. Todorciuc, M. Weiter, and B. Schneider, Biophys. Chem. 138, 3 (2008).CrossRef
18.
go back to reference H.Y. Lee, H. Tanaka, Y. Otsuka, K.H. Yoo, J.O. Lee, and T. Kawai, Appl. Phys. Lett. 80, 1670 (2002).CrossRef H.Y. Lee, H. Tanaka, Y. Otsuka, K.H. Yoo, J.O. Lee, and T. Kawai, Appl. Phys. Lett. 80, 1670 (2002).CrossRef
19.
go back to reference H. van Zalinge, D.J. Schiffrin, A.D. Bates, W. Haiss, J. Ulstrup, and R.J. Nichols, ChemPhysChem 7, 94 (2006).CrossRef H. van Zalinge, D.J. Schiffrin, A.D. Bates, W. Haiss, J. Ulstrup, and R.J. Nichols, ChemPhysChem 7, 94 (2006).CrossRef
20.
go back to reference H. Cohen, C. Nogues, D. Ullien, S. Daube, R. Naaman, and D. Porath, Faraday Discuss. 131, 367 (2006).CrossRef H. Cohen, C. Nogues, D. Ullien, S. Daube, R. Naaman, and D. Porath, Faraday Discuss. 131, 367 (2006).CrossRef
24.
go back to reference I. Kratochvílová, T. Todorciuc, K. Král, H. Nemec, M. Buncek, J. Šebera, S. Zalis, Z. Vokacova, V. Sychrovsky, L. Bendarova, P. Mojzeš, and B. Schneider, J. Phys. Chem. B 114, 5196 (2010).CrossRef I. Kratochvílová, T. Todorciuc, K. Král, H. Nemec, M. Buncek, J. Šebera, S. Zalis, Z. Vokacova, V. Sychrovsky, L. Bendarova, P. Mojzeš, and B. Schneider, J. Phys. Chem. B 114, 5196 (2010).CrossRef
27.
go back to reference B. Giese, J. Amaudrut, A.K. Köhler, M. Spormann, and S. Wessely, Nature 412, 318 (2001).CrossRef B. Giese, J. Amaudrut, A.K. Köhler, M. Spormann, and S. Wessely, Nature 412, 318 (2001).CrossRef
28.
30.
go back to reference J.M. Artés, M. López-Martínez, I. Díez-Pérez, F. Sanz, and P. Gorostiza, Electrochim. Acta 140, 83 (2014).CrossRef J.M. Artés, M. López-Martínez, I. Díez-Pérez, F. Sanz, and P. Gorostiza, Electrochim. Acta 140, 83 (2014).CrossRef
31.
go back to reference S.Z. Azmi, V. Vello, N. Rizan, J. Krishnasamy, S. Talebi, P. Gunaselvam, S.N.M. Iqbal, Y.Y. Chan, S.M. Phang, M. Iwamoto, and V. Periasamy, Appl. Phys. A 124, 559 (2018).CrossRef S.Z. Azmi, V. Vello, N. Rizan, J. Krishnasamy, S. Talebi, P. Gunaselvam, S.N.M. Iqbal, Y.Y. Chan, S.M. Phang, M. Iwamoto, and V. Periasamy, Appl. Phys. A 124, 559 (2018).CrossRef
32.
go back to reference N. Rizan, Y.Y. Chan, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S. Devadas, M.S.M. Din, M.H. Tajjudin, R.Y. Othman, S.M. Phang, M. Iwamoto, and V. Periasamy, Sci. Rep. 8, 896 (2018).CrossRef N. Rizan, Y.Y. Chan, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S. Devadas, M.S.M. Din, M.H. Tajjudin, R.Y. Othman, S.M. Phang, M. Iwamoto, and V. Periasamy, Sci. Rep. 8, 896 (2018).CrossRef
33.
go back to reference V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, Y.S. Tan, H.A. Tajuddin, and M. Iwamoto, Sci. Rep. 6, 29879 (2016).CrossRef V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, Y.S. Tan, H.A. Tajuddin, and M. Iwamoto, Sci. Rep. 6, 29879 (2016).CrossRef
34.
go back to reference Y.Y. Chan, S. Bhassu, and V. Periasamy, Appl. Phys. Express 13, 041005 (2020).CrossRef Y.Y. Chan, S. Bhassu, and V. Periasamy, Appl. Phys. Express 13, 041005 (2020).CrossRef
35.
go back to reference F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications (Berlin: Springer, 2010), p. 11.CrossRef F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications (Berlin: Springer, 2010), p. 11.CrossRef
36.
37.
go back to reference K.H. Yoo, D.H. Ha, J.O. Lee, J.W. Park, J. Kim, J.J. Kim, H.Y. Lee, T. Kawai, and H.Y. Choi, Phys. Rev. Lett. 87, 198102 (2001).CrossRef K.H. Yoo, D.H. Ha, J.O. Lee, J.W. Park, J. Kim, J.J. Kim, H.Y. Lee, T. Kawai, and H.Y. Choi, Phys. Rev. Lett. 87, 198102 (2001).CrossRef
38.
39.
40.
go back to reference J.C. Genereux, A.K. Boal, and J.K. Barton, J. Am. Chem. Soc. 132, 891 (2010).CrossRef J.C. Genereux, A.K. Boal, and J.K. Barton, J. Am. Chem. Soc. 132, 891 (2010).CrossRef
41.
go back to reference I.A. Shkrob, T.M. Marin, A. Adhikary, and M.D. Sevilla, J. Phys. Chem. C 115, 3393 (2011).CrossRef I.A. Shkrob, T.M. Marin, A. Adhikary, and M.D. Sevilla, J. Phys. Chem. C 115, 3393 (2011).CrossRef
42.
44.
45.
go back to reference N. Tuğluoğlu and S. Karadeniz, Appl. Phys. 12, 1529 (2012). N. Tuğluoğlu and S. Karadeniz, Appl. Phys. 12, 1529 (2012).
47.
go back to reference S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981). S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).
48.
go back to reference F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt, Physica B 404, 1558 (2009).CrossRef F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt, Physica B 404, 1558 (2009).CrossRef
50.
go back to reference Z. Chan, A. Ahgilan, V. Sabaratnam, Y.S. Tan, and V. Periasamy, Appl. Phys. Express 8, 047002 (2015).CrossRef Z. Chan, A. Ahgilan, V. Sabaratnam, Y.S. Tan, and V. Periasamy, Appl. Phys. Express 8, 047002 (2015).CrossRef
51.
go back to reference D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (New York, NY: McGraw-Hill, 2012). D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (New York, NY: McGraw-Hill, 2012).
Metadata
Title
Electronic Properties of Short Polynucleotides Studied Using Schottky Junctions
Authors
Souhad M. A. Daraghma
Sara Talebi
Vengadesh Periasamy
Publication date
04-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 3/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08644-3

Other articles of this Issue 3/2021

Journal of Electronic Materials 3/2021 Go to the issue

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

On the 3-D Shape of Interlaced Regions in Sn-3Ag-0.5Cu Solder Balls

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Interfacial Reactions in Lead-Free Solder/Cu-2.0Be (Alloy 25) Couples