Skip to main content
Top

2020 | OriginalPaper | Chapter

8. Electronic Properties of Transition Metal-Benzene Sandwich Clusters

Authors : Tsugunosuke Masubuchi, Atsushi Nakajima

Published in: Theoretical Chemistry for Advanced Nanomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Organometallic clusters composed of transition metal atoms and benzene molecules have been topics of great interest from both fundamental and technological points of view. In this chapter, we review the progress in the physical chemistry of transition metal-benzene clusters. The intrinsic properties of transition metal-benzene clusters as a function of cluster size are investigated by gas-phase experiments, often in combination with quantum chemical calculations. In particular, vanadium-benzene clusters denoted VnBzm, showing magic numbers at m = n + 1, n, and n – 1, are characterized to possess multiple-decker sandwich structures, where vanadium atoms and benzene molecules are alternately piled up. Moreover, the discovery of such multiple-decker formation is a cornerstone in bottom-up approaches of molecular magnetism. The interplay of mass spectrometry, laser spectroscopies, and density functional calculations reveals that multiple-decker VnBzm clusters exhibit monotonic increase in magnetic moment with the number of layers. Anion photoelectron spectroscopic studies allow direct observations of the geometric and electronic structures of sandwich clusters and their anions. Major progress in this direction includes the recent characterization of tilted multiple-decker sandwich cluster anions composed of manganese atoms and benzene molecules. The sandwich clusters with high-spin characteristics will hopefully be exploited as building blocks in advanced electronic and magnetic nanomaterials via controlled assembly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.P. Feynman, There’s plenty of room at the bottom. Caltech Eng. Sci. 23, 22–36 (1960) R.P. Feynman, There’s plenty of room at the bottom. Caltech Eng. Sci. 23, 22–36 (1960)
2.
go back to reference R. Kubo, Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn. 17, 975–986 (1962)CrossRef R. Kubo, Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn. 17, 975–986 (1962)CrossRef
3.
go back to reference W.A. de Heer, The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993)CrossRef W.A. de Heer, The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993)CrossRef
4.
go back to reference B. von Issendorff, O. Cheshnovsky, Metal to insulator transitions in clusters. Annu. Rev. Phys. Chem. 56, 549–580 (2005)CrossRef B. von Issendorff, O. Cheshnovsky, Metal to insulator transitions in clusters. Annu. Rev. Phys. Chem. 56, 549–580 (2005)CrossRef
5.
go back to reference M. Brack, The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993)CrossRef M. Brack, The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993)CrossRef
6.
go back to reference U. Heiz, U. Landman (eds.), Nanocatalysis (Springer, Berlin, 2007) U. Heiz, U. Landman (eds.), Nanocatalysis (Springer, Berlin, 2007)
7.
go back to reference H. Haberland (ed.), Clusters of Atoms and Molecules II: Solvation and Chemistry of Free Clusters, and Embedded, Supported and Compressed Clusters (Springer, Berlin, 1994) H. Haberland (ed.), Clusters of Atoms and Molecules II: Solvation and Chemistry of Free Clusters, and Embedded, Supported and Compressed Clusters (Springer, Berlin, 1994)
8.
go back to reference B.M. Smirnov, R.S. Berry, Phase Transitions of Simple Systems (Springer, Berlin, 2008) B.M. Smirnov, R.S. Berry, Phase Transitions of Simple Systems (Springer, Berlin, 2008)
9.
go back to reference M. Mitsui, A. Nakajima, Photoelectron Spectroscopy of Organic Clusters, in Handbook of Nanophysics, (CRC Press, Boca Raton, 2010) M. Mitsui, A. Nakajima, Photoelectron Spectroscopy of Organic Clusters, in Handbook of Nanophysics, (CRC Press, Boca Raton, 2010)
10.
go back to reference R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 5th edn. (Wiley, Hoboken, 2016) R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 5th edn. (Wiley, Hoboken, 2016)
11.
go back to reference A. Nakajima, K. Kaya, A novel network structure of organometallic clusters in the gas phase. J. Phys. Chem. A 104, 176–191 (2000)CrossRef A. Nakajima, K. Kaya, A novel network structure of organometallic clusters in the gas phase. J. Phys. Chem. A 104, 176–191 (2000)CrossRef
12.
go back to reference T.J. Kealy, P.L. Pauson, A new type of organo-Iron compound. Nature 168, 1039–1040 (1951)CrossRef T.J. Kealy, P.L. Pauson, A new type of organo-Iron compound. Nature 168, 1039–1040 (1951)CrossRef
13.
go back to reference G. Wilkinson, M. Rosenblum, M.C. Whiting, R.B. Woodward, The structure of iron Bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952)CrossRef G. Wilkinson, M. Rosenblum, M.C. Whiting, R.B. Woodward, The structure of iron Bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952)CrossRef
14.
go back to reference E.O. Fischer, W. Pfab, Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch. B 7, 377–379 (1952)CrossRef E.O. Fischer, W. Pfab, Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch. B 7, 377–379 (1952)CrossRef
15.
go back to reference J.W. Lauher, R. Hoffmann, Structure and chemistry of bis(cyclopentadienyl)-MLn complexes. J. Am. Chem. Soc. 98, 1729–1742 (1976)CrossRef J.W. Lauher, R. Hoffmann, Structure and chemistry of bis(cyclopentadienyl)-MLn complexes. J. Am. Chem. Soc. 98, 1729–1742 (1976)CrossRef
16.
go back to reference E.O. Fischer, R. Jira, Di-cyclopentadienyl-kobalt(II). Z. Naturforsch. B 8, 327–328 (1953)CrossRef E.O. Fischer, R. Jira, Di-cyclopentadienyl-kobalt(II). Z. Naturforsch. B 8, 327–328 (1953)CrossRef
17.
go back to reference E.O. Fischer, W. Hafner, Di-benzol-chrom. Z. Naturforsch. B 10, 665–668 (1955)CrossRef E.O. Fischer, W. Hafner, Di-benzol-chrom. Z. Naturforsch. B 10, 665–668 (1955)CrossRef
18.
go back to reference A. Streitwieser, U. Müller-Westerhoff, Bis(cyclooctatetraeny1)uranium (Uranocene). A new class of sandwich complexes that utilize atomic f orbitals. J. Am. Chem. Soc. 90, 7364 (1968)CrossRef A. Streitwieser, U. Müller-Westerhoff, Bis(cyclooctatetraeny1)uranium (Uranocene). A new class of sandwich complexes that utilize atomic f orbitals. J. Am. Chem. Soc. 90, 7364 (1968)CrossRef
19.
go back to reference N. Rösch, A. Streitwieser Jr., SCF-Xα scattered-wave MO study of thorocene and uranocene. J. Organomet. Chem. 145, 195–200 (1978)CrossRef N. Rösch, A. Streitwieser Jr., SCF-Xα scattered-wave MO study of thorocene and uranocene. J. Organomet. Chem. 145, 195–200 (1978)CrossRef
20.
go back to reference E.L. Muetterties, J.R. Bleeke, E.J. Wucherer, T. Albright, Structural, stereochemical, and electronic features of arene-metal complexes. Chem. Rev. 82, 499–525 (1982)CrossRef E.L. Muetterties, J.R. Bleeke, E.J. Wucherer, T. Albright, Structural, stereochemical, and electronic features of arene-metal complexes. Chem. Rev. 82, 499–525 (1982)CrossRef
21.
go back to reference E.O. Fischer, H.P. Kögler, Über Aromatenkomplexe von Metallen, IX. Di-Benzol-Vanadin(O). Chem. Ber. 90, 250–255 (1957)CrossRef E.O. Fischer, H.P. Kögler, Über Aromatenkomplexe von Metallen, IX. Di-Benzol-Vanadin(O). Chem. Ber. 90, 250–255 (1957)CrossRef
22.
go back to reference A. Salzer, H. Werner, A new route to triple-decker sandwich compounds. Angew. Chem. Int. Ed. 11, 930–932 (1972)CrossRef A. Salzer, H. Werner, A new route to triple-decker sandwich compounds. Angew. Chem. Int. Ed. 11, 930–932 (1972)CrossRef
23.
go back to reference W. Siebert, 2,3-Dihydro-1,3-diborole-metal complexes with activated C-H bonds: Building blocks for multilayered sandwich compounds. Angew. Chem. Int. Ed. 24, 943–958 (1985)CrossRef W. Siebert, 2,3-Dihydro-1,3-diborole-metal complexes with activated C-H bonds: Building blocks for multilayered sandwich compounds. Angew. Chem. Int. Ed. 24, 943–958 (1985)CrossRef
24.
go back to reference H. Werner, New varieties of sandwich complexes. Angew. Chem. Int. Ed. 16, 1–9 (1977)CrossRef H. Werner, New varieties of sandwich complexes. Angew. Chem. Int. Ed. 16, 1–9 (1977)CrossRef
25.
go back to reference M. Munakata, L.P. Wu, G.L. Ning, A new type of multilayer system–silver(I) complexes of polycyclic aromatic compounds. Coord. Chem. Rev. 198, 171–203 (2000)CrossRef M. Munakata, L.P. Wu, G.L. Ning, A new type of multilayer system–silver(I) complexes of polycyclic aromatic compounds. Coord. Chem. Rev. 198, 171–203 (2000)CrossRef
26.
go back to reference P.L. Timms, Chemistry of transition-metal vapours. Part I. reactions with trifluorophosphine and related compounds. J. Chem. Soc. A 1970, 2526–2528 (1970)CrossRef P.L. Timms, Chemistry of transition-metal vapours. Part I. reactions with trifluorophosphine and related compounds. J. Chem. Soc. A 1970, 2526–2528 (1970)CrossRef
27.
go back to reference P.S. Skell, L.D. Wescott, Chemical properties of C3, a dicarbene. J. Am. Chem. Soc. 85, 1023–1023 (1963)CrossRef P.S. Skell, L.D. Wescott, Chemical properties of C3, a dicarbene. J. Am. Chem. Soc. 85, 1023–1023 (1963)CrossRef
28.
go back to reference R. Middleton, J.R. Hull, S.R. Simpson, C.H. Tomlinson, P.L. Timms, Chemistry of transition-metal vapours. Part III. Formation of complexes with arenes, trifluorophosphine, and nitric oxide. J. Chem. Soc. Dalton Trans. 1, 120–124 (1973)CrossRef R. Middleton, J.R. Hull, S.R. Simpson, C.H. Tomlinson, P.L. Timms, Chemistry of transition-metal vapours. Part III. Formation of complexes with arenes, trifluorophosphine, and nitric oxide. J. Chem. Soc. Dalton Trans. 1, 120–124 (1973)CrossRef
29.
go back to reference P.L. Timms, R.B. King, Preparative applications of metal vapours obtained by evaporation of metal powders from coated filaments : A new preparation of dibenzene-ruthenium and observation of its limiting N.M.R. spectrum. J. Chem. Soc. Chem. Commun. 22, 898–899 (1978)CrossRef P.L. Timms, R.B. King, Preparative applications of metal vapours obtained by evaporation of metal powders from coated filaments : A new preparation of dibenzene-ruthenium and observation of its limiting N.M.R. spectrum. J. Chem. Soc. Chem. Commun. 22, 898–899 (1978)CrossRef
30.
go back to reference W.M. Lamanna, Metal vapor synthesis of a novel triple-decker sandwich complex: (η6-mesitylene)2(μ-η6:η6-mesitylene)Cr2. J. Am. Chem. Soc. 108, 2096–2097 (1986)CrossRef W.M. Lamanna, Metal vapor synthesis of a novel triple-decker sandwich complex: (η6-mesitylene)2(μ-η66-mesitylene)Cr2. J. Am. Chem. Soc. 108, 2096–2097 (1986)CrossRef
31.
go back to reference R.E. Smalley, Laser studies of metal cluster beams. Laser Chem. 2, 167–184 (1983)CrossRef R.E. Smalley, Laser studies of metal cluster beams. Laser Chem. 2, 167–184 (1983)CrossRef
32.
go back to reference P.M. Holland, A.W. Castleman, The thermochemical properties of gas-phase transition metal ion complexes. J. Chem. Phys. 76, 4195–4206 (1982)CrossRef P.M. Holland, A.W. Castleman, The thermochemical properties of gas-phase transition metal ion complexes. J. Chem. Phys. 76, 4195–4206 (1982)CrossRef
33.
go back to reference H. Higashide, T. Kaya, M. Kobayashi, H. Shinohara, H. Sato, Reactions of benzene clusters with metal ions as studied by the laser ablation—Molecular beam method: Observation of clustered complex ions M(C6H6)n + (n ⩾ 2) and fragment complex ions M(C6H6)(CXHY)+ with X ⩽ and Y ⩽ 4. Chem. Phys. Lett. 171, 297–302 (1990)CrossRef H. Higashide, T. Kaya, M. Kobayashi, H. Shinohara, H. Sato, Reactions of benzene clusters with metal ions as studied by the laser ablation—Molecular beam method: Observation of clustered complex ions M(C6H6)n + (n ⩾ 2) and fragment complex ions M(C6H6)(CXHY)+ with X ⩽ and Y ⩽ 4. Chem. Phys. Lett. 171, 297–302 (1990)CrossRef
34.
go back to reference C.S. Yeh, K.F. Willey, D.L. Robbins, J.S. Pilgrim, M.A. Duncan, Photodissociation spectroscopy of Mg+H2O. Chem. Phys. Lett. 196, 233–238 (1992)CrossRef C.S. Yeh, K.F. Willey, D.L. Robbins, J.S. Pilgrim, M.A. Duncan, Photodissociation spectroscopy of Mg+H2O. Chem. Phys. Lett. 196, 233–238 (1992)CrossRef
35.
go back to reference F. Misaizu, M. Sanekata, K. Fuke, S. Iwata, Photodissociation study on Mg+(H2O)n, n=1–5: Electronic structure and photoinduced intracluster reaction. J. Chem. Phys. 100, 1161–1170 (1994)CrossRef F. Misaizu, M. Sanekata, K. Fuke, S. Iwata, Photodissociation study on Mg+(H2O)n, n=1–5: Electronic structure and photoinduced intracluster reaction. J. Chem. Phys. 100, 1161–1170 (1994)CrossRef
36.
go back to reference K.F. Willey, P.Y. Cheng, K.D. Pearce, M.A. Duncan, Photoinitiated charge transfer and dissociation in mass-selected metalloorganic complexes. J. Phys. Chem. 94, 4769–4772 (1990)CrossRef K.F. Willey, P.Y. Cheng, K.D. Pearce, M.A. Duncan, Photoinitiated charge transfer and dissociation in mass-selected metalloorganic complexes. J. Phys. Chem. 94, 4769–4772 (1990)CrossRef
37.
go back to reference Y.-M. Chen, P.B. Armentrout, Collision-induced dissociation of Ag(C6H6)+. Chem. Phys. Lett. 210, 123–128 (1993)CrossRef Y.-M. Chen, P.B. Armentrout, Collision-induced dissociation of Ag(C6H6)+. Chem. Phys. Lett. 210, 123–128 (1993)CrossRef
38.
go back to reference F. Meyer, F.A. Khan, P.B. Armentrout, Thermochemistry of transition metal benzene complexes: Binding energies of M(C6H6)x + (x = 1, 2) for M = Ti to Cu. J. Am. Chem. Soc. 117, 9740–9748 (1995)CrossRef F. Meyer, F.A. Khan, P.B. Armentrout, Thermochemistry of transition metal benzene complexes: Binding energies of M(C6H6)x + (x = 1, 2) for M = Ti to Cu. J. Am. Chem. Soc. 117, 9740–9748 (1995)CrossRef
39.
go back to reference S. Maruyama, L.R. Anderson, R.E. Smalley, Direct injection supersonic cluster beam source for FT-ICR studies of clusters. Rev. Sci. Instrum. 61, 3686–3693 (1990)CrossRef S. Maruyama, L.R. Anderson, R.E. Smalley, Direct injection supersonic cluster beam source for FT-ICR studies of clusters. Rev. Sci. Instrum. 61, 3686–3693 (1990)CrossRef
40.
go back to reference P. Milani, W.A. de Heer, Improved pulsed laser vaporization source for production of intense beams of neutral and ionized clusters. Rev. Sci. Instrum. 61, 1835–1838 (1990)CrossRef P. Milani, W.A. de Heer, Improved pulsed laser vaporization source for production of intense beams of neutral and ionized clusters. Rev. Sci. Instrum. 61, 1835–1838 (1990)CrossRef
41.
go back to reference A. Nakajima, T. Kishi, T. Sugioka, Y. Sone, K. Kaya, Mass distributions of aluminum negative cluster ions and their binary cluster ions mixed with a carbon atom. Chem. Phys. Lett. 177, 297–300 (1991)CrossRef A. Nakajima, T. Kishi, T. Sugioka, Y. Sone, K. Kaya, Mass distributions of aluminum negative cluster ions and their binary cluster ions mixed with a carbon atom. Chem. Phys. Lett. 177, 297–300 (1991)CrossRef
42.
go back to reference S. Nonose, Y. Sone, K. Onodera, S. Sudo, K. Kaya, Structure and reactivity of bimetallic cobalt-vanadium (ConVm) clusters. J. Phys. Chem. 94, 2744–2746 (1990)CrossRef S. Nonose, Y. Sone, K. Onodera, S. Sudo, K. Kaya, Structure and reactivity of bimetallic cobalt-vanadium (ConVm) clusters. J. Phys. Chem. 94, 2744–2746 (1990)CrossRef
43.
go back to reference K. Hoshino, T. Kurikawa, H. Takeda, A. Nakajima, K. Kaya, Structures and ionization energies of sandwich clusters (Vn(benzene)m). J. Phys. Chem. 99, 3053–3055 (1995)CrossRef K. Hoshino, T. Kurikawa, H. Takeda, A. Nakajima, K. Kaya, Structures and ionization energies of sandwich clusters (Vn(benzene)m). J. Phys. Chem. 99, 3053–3055 (1995)CrossRef
44.
go back to reference P. Weis, P.R. Kemper, M.T. Bowers, Structures and energetics of Vn(C6H6)m + clusters: Evidence for a quintuple-decker sandwich. J. Phys. Chem. A 101, 8207–8213 (1997)CrossRef P. Weis, P.R. Kemper, M.T. Bowers, Structures and energetics of Vn(C6H6)m + clusters: Evidence for a quintuple-decker sandwich. J. Phys. Chem. A 101, 8207–8213 (1997)CrossRef
45.
go back to reference A. Nakajima, Study on electronic properties of composite clusters toward nanoscale functional advanced materials. Bull. Chem. Soc. Jpn. 86, 414–437 (2013)CrossRef A. Nakajima, Study on electronic properties of composite clusters toward nanoscale functional advanced materials. Bull. Chem. Soc. Jpn. 86, 414–437 (2013)CrossRef
46.
go back to reference T. Kurikawa, M. Hirano, H. Takeda, K. Yagi, K. Hoshino, A. Nakajima, K. Kaya, Structures and ionization energies of cobalt-benzene clusters (Con(benzene)m). J. Phys. Chem. 99, 16248–16252 (1995)CrossRef T. Kurikawa, M. Hirano, H. Takeda, K. Yagi, K. Hoshino, A. Nakajima, K. Kaya, Structures and ionization energies of cobalt-benzene clusters (Con(benzene)m). J. Phys. Chem. 99, 16248–16252 (1995)CrossRef
47.
go back to reference T. Kurikawa, H. Takeda, A. Nakajima, K. Kaya, Structures and stabilities of 3d-transition metal-benzene organometallic clusters. Z. Phys. D 40, 65–69 (1997)CrossRef T. Kurikawa, H. Takeda, A. Nakajima, K. Kaya, Structures and stabilities of 3d-transition metal-benzene organometallic clusters. Z. Phys. D 40, 65–69 (1997)CrossRef
48.
go back to reference T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima, K. Kaya, Electronic properties of organometallic metal−benzene complexes [Mn(benzene)m (M = Sc−Cu)]. Organometallics 18, 1430–1438 (1999)CrossRef T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima, K. Kaya, Electronic properties of organometallic metal−benzene complexes [Mn(benzene)m (M = Sc−Cu)]. Organometallics 18, 1430–1438 (1999)CrossRef
49.
go back to reference Y. Huang, B.S. Freiser, Synthesis of Bis(buckminsterful1erene)nickel cation, Ni(C60)2 +, in the gas phase. J. Am. Chem. Soc. 113, 8186–8187 (1991)CrossRef Y. Huang, B.S. Freiser, Synthesis of Bis(buckminsterful1erene)nickel cation, Ni(C60)2 +, in the gas phase. J. Am. Chem. Soc. 113, 8186–8187 (1991)CrossRef
50.
go back to reference Y. Basir, S.L. Anderson, Interaction of Mn+ and Mn2 + with C60. Exohedral and endohedral metal-fullerene bonding. Chem. Phys. Lett. 243, 45–48 (1995)CrossRef Y. Basir, S.L. Anderson, Interaction of Mn+ and Mn2 + with C60. Exohedral and endohedral metal-fullerene bonding. Chem. Phys. Lett. 243, 45–48 (1995)CrossRef
51.
go back to reference A. Nakajima, S. Nagao, H. Takeda, T. Kurikawa, K. Kaya, Multiple dumbbell structures of vanadium–C60 clusters. J. Chem. Phys. 107, 6491–6494 (1997)CrossRef A. Nakajima, S. Nagao, H. Takeda, T. Kurikawa, K. Kaya, Multiple dumbbell structures of vanadium–C60 clusters. J. Chem. Phys. 107, 6491–6494 (1997)CrossRef
52.
go back to reference T. Kurikawa, S. Nagao, K. Miyajima, A. Nakajima, K. Kaya, Formation of cobalt-C60 clusters: Tricapped Co(C60)3 unit. J. Phys. Chem. A 102, 1743–1747 (1998)CrossRef T. Kurikawa, S. Nagao, K. Miyajima, A. Nakajima, K. Kaya, Formation of cobalt-C60 clusters: Tricapped Co(C60)3 unit. J. Phys. Chem. A 102, 1743–1747 (1998)CrossRef
53.
go back to reference S. Nagao, T. Kurikawa, K. Miyajima, A. Nakajima, K. Kaya, Formation and structures of transition metal-C60 clusters. J. Phys. Chem. A 102, 4495–4500 (1998)CrossRef S. Nagao, T. Kurikawa, K. Miyajima, A. Nakajima, K. Kaya, Formation and structures of transition metal-C60 clusters. J. Phys. Chem. A 102, 4495–4500 (1998)CrossRef
54.
go back to reference B.P. Pozniak, R.C. Dunbar, Monomer and dimer complexes of coronene with atomic ions. J. Am. Chem. Soc. 119, 10439–10445 (1997)CrossRef B.P. Pozniak, R.C. Dunbar, Monomer and dimer complexes of coronene with atomic ions. J. Am. Chem. Soc. 119, 10439–10445 (1997)CrossRef
55.
go back to reference J.W. Buchanan, J.E. Reddic, G.A. Grieves, M.A. Duncan, Metal and multimetal complexes with polyaromatic hydrocarbons: Formation and photodissociation of Fex-(Coronene)y cations. J. Phys. Chem. A 102, 6390–6394 (1998)CrossRef J.W. Buchanan, J.E. Reddic, G.A. Grieves, M.A. Duncan, Metal and multimetal complexes with polyaromatic hydrocarbons: Formation and photodissociation of Fex-(Coronene)y cations. J. Phys. Chem. A 102, 6390–6394 (1998)CrossRef
56.
go back to reference J.W. Buchanan, G.A. Grieves, J.E. Reddic, M.A. Duncan, Novel mixed ligand sandwich complexes: Competitive binding of iron with benzene, coronene, and C60. Int. J. Mass Spectrom. 182–183, 323–333 (1999)CrossRef J.W. Buchanan, G.A. Grieves, J.E. Reddic, M.A. Duncan, Novel mixed ligand sandwich complexes: Competitive binding of iron with benzene, coronene, and C60. Int. J. Mass Spectrom. 182–183, 323–333 (1999)CrossRef
57.
go back to reference N.R. Foster, G.A. Grieves, J.W. Buchanan, N.D. Flynn, M.A. Duncan, Growth and photodissociation of Crx-(Coronene)y complexes. J. Phys. Chem. A 104, 11055–11062 (2000)CrossRef N.R. Foster, G.A. Grieves, J.W. Buchanan, N.D. Flynn, M.A. Duncan, Growth and photodissociation of Crx-(Coronene)y complexes. J. Phys. Chem. A 104, 11055–11062 (2000)CrossRef
58.
go back to reference M.A. Duncan, A.M. Knight, Y. Negishi, S. Nagao, K. Judai, A. Nakajima, K. Kaya, Photoelectron spectroscopy of Vx(Coronene)y and Tix(Coronene)y anions. J. Phys. Chem. A 105(44), 10093–10097 (2001)CrossRef M.A. Duncan, A.M. Knight, Y. Negishi, S. Nagao, K. Judai, A. Nakajima, K. Kaya, Photoelectron spectroscopy of Vx(Coronene)y and Tix(Coronene)y anions. J. Phys. Chem. A 105(44), 10093–10097 (2001)CrossRef
59.
go back to reference M. Hirano, K. Judai, A. Nakajima, K. Kaya, Effect of ring substituents on formation rates for vanadium-arene clusters. J. Phys. Chem. A 101, 4893–4899 (1997)CrossRef M. Hirano, K. Judai, A. Nakajima, K. Kaya, Effect of ring substituents on formation rates for vanadium-arene clusters. J. Phys. Chem. A 101, 4893–4899 (1997)CrossRef
60.
go back to reference K. Judai, M. Hirano, H. Kawamata, S. Yabushita, A. Nakajima, K. Kaya, Formation of vanadium-arene complex anions and their photoelectron spectroscopy. Chem. Phys. Lett. 270, 23–30 (1997)CrossRef K. Judai, M. Hirano, H. Kawamata, S. Yabushita, A. Nakajima, K. Kaya, Formation of vanadium-arene complex anions and their photoelectron spectroscopy. Chem. Phys. Lett. 270, 23–30 (1997)CrossRef
61.
go back to reference K. Judai, Y. Nakamura, M. Tachibana, Y. Negishi, A. Nakajima, K. Kaya, Photoelectron spectroscopy of scandium-arene complex anions. Chem. Lett. 30, 114–115 (2001)CrossRef K. Judai, Y. Nakamura, M. Tachibana, Y. Negishi, A. Nakajima, K. Kaya, Photoelectron spectroscopy of scandium-arene complex anions. Chem. Lett. 30, 114–115 (2001)CrossRef
62.
go back to reference T. Yasuike, A. Nakajima, S. Yabushita, K. Kaya, Why do vanadium atoms form multiple-decker sandwich clusters with benzene molecules efficiently? J. Phys. Chem. A 101, 5360–5367 (1997)CrossRef T. Yasuike, A. Nakajima, S. Yabushita, K. Kaya, Why do vanadium atoms form multiple-decker sandwich clusters with benzene molecules efficiently? J. Phys. Chem. A 101, 5360–5367 (1997)CrossRef
63.
go back to reference P.B. Armentrout, Electronic state-specific transition metal ion chemistry. Annu. Rev. Phys. Chem. 41, 313–344 (1990)CrossRef P.B. Armentrout, Electronic state-specific transition metal ion chemistry. Annu. Rev. Phys. Chem. 41, 313–344 (1990)CrossRef
64.
go back to reference C.E. Moore, Atomic Energy Levels (National Bureau of Standards, Washington, DC, 1949) C.E. Moore, Atomic Energy Levels (National Bureau of Standards, Washington, DC, 1949)
65.
go back to reference J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999)CrossRef J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999)CrossRef
66.
go back to reference J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullereue tubules metallic? Phys. Rev. Lett. 68, 631–634 (1992)PubMedCrossRef J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullereue tubules metallic? Phys. Rev. Lett. 68, 631–634 (1992)PubMedCrossRef
67.
go back to reference R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRef R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRef
68.
go back to reference J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)CrossRef J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)CrossRef
69.
go back to reference D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, New York, 2006)CrossRef D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, New York, 2006)CrossRef
70.
go back to reference G.S. Papaefstathiou, A. Escuer, C.P. Raptopoulou, A. Terzis, S.P. Perlepes, R. Vicente, Defective double-cubane, tetranuclear manganese (II) and cobalt (II) complexes with simultaneous μ1,1-azido and μ-O bridges. Eur. J. Inorg. Chem. 6, 1567–1574 (2001)CrossRef G.S. Papaefstathiou, A. Escuer, C.P. Raptopoulou, A. Terzis, S.P. Perlepes, R. Vicente, Defective double-cubane, tetranuclear manganese (II) and cobalt (II) complexes with simultaneous μ1,1-azido and μ-O bridges. Eur. J. Inorg. Chem. 6, 1567–1574 (2001)CrossRef
71.
go back to reference C. Dendrinou-Samara, M. Alexiou, C.M. Zaleski, J.W. Kampf, M.L. Kirk, D.P. Kessissoglou, V.L. Pecoraro, Synthesis and magnetic properties of a metallacryptate that behaves as a single-molecule magnet. Angew. Chem. Int. Ed. 42, 3763–3766 (2003)CrossRef C. Dendrinou-Samara, M. Alexiou, C.M. Zaleski, J.W. Kampf, M.L. Kirk, D.P. Kessissoglou, V.L. Pecoraro, Synthesis and magnetic properties of a metallacryptate that behaves as a single-molecule magnet. Angew. Chem. Int. Ed. 42, 3763–3766 (2003)CrossRef
72.
go back to reference D.E. Freedman, W.H. Harman, T.D. Harris, G.J. Long, C.J. Chang, J.R. Long, Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010)PubMedCrossRef D.E. Freedman, W.H. Harman, T.D. Harris, G.J. Long, C.J. Chang, J.R. Long, Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010)PubMedCrossRef
73.
go back to reference F. Habib, O.R. Luca, V. Vieru, M. Shiddiq, I. Korobkov, S.I. Gorelsky, M.K. Takase, L.F. Chibotaru, S. Hill, R.H. Crabtree, M. Murugesu, Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes. Angew. Chem. Int. Ed. 52, 11290–11293 (2013)CrossRef F. Habib, O.R. Luca, V. Vieru, M. Shiddiq, I. Korobkov, S.I. Gorelsky, M.K. Takase, L.F. Chibotaru, S. Hill, R.H. Crabtree, M. Murugesu, Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes. Angew. Chem. Int. Ed. 52, 11290–11293 (2013)CrossRef
74.
go back to reference R. Clérac, H. Miyasaka, M. Yamashita, C. Coulon, Evidence for single-chain magnet behavior in a MnIII-NiII chain designed with high spin magnetic units: A route to high temperature metastable magnets. J. Am. Chem. Soc. 124, 12837–12844 (2002)PubMedCrossRef R. Clérac, H. Miyasaka, M. Yamashita, C. Coulon, Evidence for single-chain magnet behavior in a MnIII-NiII chain designed with high spin magnetic units: A route to high temperature metastable magnets. J. Am. Chem. Soc. 124, 12837–12844 (2002)PubMedCrossRef
75.
go back to reference W.-X. Zhang, R. Ishikawa, B. Breedlove, M. Yamashita, Single-chain magnets: Beyond the Glauber model. RSC Adv. 3, 3772–3798 (2013)CrossRef W.-X. Zhang, R. Ishikawa, B. Breedlove, M. Yamashita, Single-chain magnets: Beyond the Glauber model. RSC Adv. 3, 3772–3798 (2013)CrossRef
76.
go back to reference R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—The route toward applications. Science 297, 787–792 (2002)PubMedCrossRef R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—The route toward applications. Science 297, 787–792 (2002)PubMedCrossRef
77.
go back to reference M.H. Jo, J.E. Grose, K. Baheti, M.M. Deshmukh, J.J. Sokol, E.M. Rumberger, D.N. Hendrickson, J.R. Long, H. Park, D.C. Ralph, Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006)PubMedCrossRef M.H. Jo, J.E. Grose, K. Baheti, M.M. Deshmukh, J.J. Sokol, E.M. Rumberger, D.N. Hendrickson, J.R. Long, H. Park, D.C. Ralph, Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006)PubMedCrossRef
78.
go back to reference L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008)PubMedCrossRef L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008)PubMedCrossRef
79.
go back to reference L. Ma, A.H.C. Hart, S. Ozden, R. Vajtaia, P.M. Ajayan, Spiers memorial lecture advances of carbon nanomaterials. Faraday Discuss. 173, 9–46 (2014)PubMedCrossRef L. Ma, A.H.C. Hart, S. Ozden, R. Vajtaia, P.M. Ajayan, Spiers memorial lecture advances of carbon nanomaterials. Faraday Discuss. 173, 9–46 (2014)PubMedCrossRef
80.
go back to reference S.N. Khanna, P. Jena, Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 (1993)CrossRef S.N. Khanna, P. Jena, Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 (1993)CrossRef
81.
go back to reference S.A. Claridge, A.W. Castleman Jr., S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, Cluster-assembled materials. ACS Nano 3, 244–255 (2009)PubMedCrossRef S.A. Claridge, A.W. Castleman Jr., S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, Cluster-assembled materials. ACS Nano 3, 244–255 (2009)PubMedCrossRef
82.
go back to reference P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003)PubMedCrossRef P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003)PubMedCrossRef
83.
go back to reference R. Pandey, B.K. Rao, P. Jena, J.M. Newsam, Unique magnetic signature of transition metal atoms supported on benzene. Chem. Phys. Lett. 321, 142–150 (2000)CrossRef R. Pandey, B.K. Rao, P. Jena, J.M. Newsam, Unique magnetic signature of transition metal atoms supported on benzene. Chem. Phys. Lett. 321, 142–150 (2000)CrossRef
84.
go back to reference R. Pandey, B.K. Rao, P. Jena, M.A. Blanco, Electronic structure and properties of transition metal-benzene complexes. J. Am. Chem. Soc. 123, 3799–3808 (2001)PubMedCrossRef R. Pandey, B.K. Rao, P. Jena, M.A. Blanco, Electronic structure and properties of transition metal-benzene complexes. J. Am. Chem. Soc. 123, 3799–3808 (2001)PubMedCrossRef
85.
go back to reference C. Elschenbroich, E. Schmidt, R. Gondrum, B. Metz, O. Burghaus, W. Massa, S. Wocadlo, Metal π complexes of benzene derivatives. Germanium in the periphery of Bis(benzene)vanadium and Bis(benzene)chromium. Synthesis and structure of new heterametallocyclophanes. Organometallics 16, 4589–4596 (1997)CrossRef C. Elschenbroich, E. Schmidt, R. Gondrum, B. Metz, O. Burghaus, W. Massa, S. Wocadlo, Metal π complexes of benzene derivatives. Germanium in the periphery of Bis(benzene)vanadium and Bis(benzene)chromium. Synthesis and structure of new heterametallocyclophanes. Organometallics 16, 4589–4596 (1997)CrossRef
86.
go back to reference J.M. Frost, K.L.M. Harriman, M. Murugesu, The rise of 3-d single-ion magnets in molecular magnetism: Towards materials from molecules? Chem. Sci. 7, 2470–2491 (2016)PubMedCrossRef J.M. Frost, K.L.M. Harriman, M. Murugesu, The rise of 3-d single-ion magnets in molecular magnetism: Towards materials from molecules? Chem. Sci. 7, 2470–2491 (2016)PubMedCrossRef
87.
go back to reference W. Gerlach, O. Stern, Das magnetische Moment des Silberatoms. Z. Phys. A 9, 353–355 (1922)CrossRef W. Gerlach, O. Stern, Das magnetische Moment des Silberatoms. Z. Phys. A 9, 353–355 (1922)CrossRef
88.
go back to reference K. Miyajima, A. Nakajima, S. Yabushita, M.B. Knickelbein, K. Kaya, Ferromagnetism in one-dimensional vanadium-benzene sandwich clusters. J. Am. Chem. Soc. 126, 13202–13203 (2004)PubMedCrossRef K. Miyajima, A. Nakajima, S. Yabushita, M.B. Knickelbein, K. Kaya, Ferromagnetism in one-dimensional vanadium-benzene sandwich clusters. J. Am. Chem. Soc. 126, 13202–13203 (2004)PubMedCrossRef
89.
go back to reference K. Miyajima, M.B. Knickelbein, A. Nakajima, Stern-Gerlach studies of organometallic sandwich clusters. Eur. Phys. J. D. 34, 177–182 (2005)CrossRef K. Miyajima, M.B. Knickelbein, A. Nakajima, Stern-Gerlach studies of organometallic sandwich clusters. Eur. Phys. J. D. 34, 177–182 (2005)CrossRef
90.
go back to reference K. Miyajima, S. Yabushita, M.B. Knickelbein, A. Nakajima, Stern-Gerlach experiments of one-dimensional metal-benzene sandwich clusters: Mn(C6H6)m (M = Al, Sc, Ti, and V). J. Am. Chem. Soc. 129, 8473–8480 (2007)PubMedCrossRef K. Miyajima, S. Yabushita, M.B. Knickelbein, A. Nakajima, Stern-Gerlach experiments of one-dimensional metal-benzene sandwich clusters: Mn(C6H6)m (M = Al, Sc, Ti, and V). J. Am. Chem. Soc. 129, 8473–8480 (2007)PubMedCrossRef
91.
go back to reference M.B. Knickelbein, Magnetic moments of bare and benzene-capped cobalt clusters. J. Chem. Phys. 125, 044308-1–044308-7 (2006)CrossRef M.B. Knickelbein, Magnetic moments of bare and benzene-capped cobalt clusters. J. Chem. Phys. 125, 044308-1–044308-7 (2006)CrossRef
92.
go back to reference A.K. Kandalam, B.K. Rao, P. Jena, R. Pandey, Geometry and electronic structure of Vn(Bz)m complexes. J. Chem. Phys. 120, 10414–10422 (2004)PubMedCrossRef A.K. Kandalam, B.K. Rao, P. Jena, R. Pandey, Geometry and electronic structure of Vn(Bz)m complexes. J. Chem. Phys. 120, 10414–10422 (2004)PubMedCrossRef
93.
go back to reference J. Wang, P.H. Acioli, J. Jellinek, Structure and magnetism of VnBzn+1 sandwich clusters. J. Am. Chem. Soc. 127, 2812–2813 (2005)PubMedCrossRef J. Wang, P.H. Acioli, J. Jellinek, Structure and magnetism of VnBzn+1 sandwich clusters. J. Am. Chem. Soc. 127, 2812–2813 (2005)PubMedCrossRef
94.
go back to reference X. Zhang, J. Wang, Structural, electronic, and magnetic properties of Con(benzene)m complexes. J. Phys. Chem. A 112, 296–304 (2008)PubMedCrossRef X. Zhang, J. Wang, Structural, electronic, and magnetic properties of Con(benzene)m complexes. J. Phys. Chem. A 112, 296–304 (2008)PubMedCrossRef
95.
go back to reference M.M. Rahman, H. Kasai, E.S. Dy, Theoretical investigation of electric and magnetic properties of benzene–vanadium sandwich complex chain. Jpn. J. Appl. Phys. 44, 7954–7956 (2005)CrossRef M.M. Rahman, H. Kasai, E.S. Dy, Theoretical investigation of electric and magnetic properties of benzene–vanadium sandwich complex chain. Jpn. J. Appl. Phys. 44, 7954–7956 (2005)CrossRef
96.
go back to reference H. Xiang, J. Yang, J.G. Hou, Q. Zhu, One-dimensional transition metal−benzene sandwich polymers: Possible ideal conductors for spin transport. J. Am. Chem. Soc. 128, 2310–2314 (2006)PubMedCrossRef H. Xiang, J. Yang, J.G. Hou, Q. Zhu, One-dimensional transition metal−benzene sandwich polymers: Possible ideal conductors for spin transport. J. Am. Chem. Soc. 128, 2310–2314 (2006)PubMedCrossRef
97.
go back to reference V.V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, I. Mertig, Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet. Phys. Rev. Lett. 97, 097201-1–097201-4 (2006)CrossRef V.V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, I. Mertig, Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet. Phys. Rev. Lett. 97, 097201-1–097201-4 (2006)CrossRef
98.
go back to reference Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Heinze, S. Blügel, The interplay of structure and spin-orbit strength in the magnetism of metal-benzene sandwiches: From single molecules to infinite wires. Nanotechnology 18, 495402-1–495402-12 (2007)CrossRef Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Heinze, S. Blügel, The interplay of structure and spin-orbit strength in the magnetism of metal-benzene sandwiches: From single molecules to infinite wires. Nanotechnology 18, 495402-1–495402-12 (2007)CrossRef
99.
go back to reference H. Weng, T. Ozaki, K. Terakura, Theoretical analysis of magnetic coupling in sandwich clusters Vn(C6H6)n+1. J. Phys. Soc. Jpn. 77, 014301-1–014301-9 (2007) H. Weng, T. Ozaki, K. Terakura, Theoretical analysis of magnetic coupling in sandwich clusters Vn(C6H6)n+1. J. Phys. Soc. Jpn. 77, 014301-1–014301-9 (2007)
100.
go back to reference L. Shen, S.-W. Yang, M.-F. Ng, V. Ligatchev, L. Zhou, Y. Feng, Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. J. Am. Chem. Soc. 130, 13956–13960 (2008)PubMedCrossRef L. Shen, S.-W. Yang, M.-F. Ng, V. Ligatchev, L. Zhou, Y. Feng, Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. J. Am. Chem. Soc. 130, 13956–13960 (2008)PubMedCrossRef
101.
go back to reference L. Zhou, S.-W. Yang, M.-F. Ng, M.B. Sullivan, V.B.C. Tan, L. Shen, One-dimensional iron−cyclopentadienyl sandwich molecular wire with half metallic, negative differential resistance and high-spin filter efficiency properties. J. Am. Chem. Soc. 130, 4023–4027 (2008)PubMedCrossRef L. Zhou, S.-W. Yang, M.-F. Ng, M.B. Sullivan, V.B.C. Tan, L. Shen, One-dimensional iron−cyclopentadienyl sandwich molecular wire with half metallic, negative differential resistance and high-spin filter efficiency properties. J. Am. Chem. Soc. 130, 4023–4027 (2008)PubMedCrossRef
102.
go back to reference L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, W.N. Mei, S. Sanvito, Novel one-dimensional organometallic half metals: Vanadium-cyclopentadienyl, vanadium-cyclopentadienyl-benzene, and vanadium-anthracene wires. Nano Lett. 8, 3640–3644 (2008)PubMedCrossRef L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, W.N. Mei, S. Sanvito, Novel one-dimensional organometallic half metals: Vanadium-cyclopentadienyl, vanadium-cyclopentadienyl-benzene, and vanadium-anthracene wires. Nano Lett. 8, 3640–3644 (2008)PubMedCrossRef
103.
go back to reference X. Zhang, M.-F. Ng, Y. Wang, J. Wang, S.-W. Yang, Theoretical studies on structural, magnetic, and spintronic characteristics of sandwiched EunCOTn+1 (n = 1-4) clusters. ACS Nano 3, 2515–2522 (2009)PubMedCrossRef X. Zhang, M.-F. Ng, Y. Wang, J. Wang, S.-W. Yang, Theoretical studies on structural, magnetic, and spintronic characteristics of sandwiched EunCOTn+1 (n = 1-4) clusters. ACS Nano 3, 2515–2522 (2009)PubMedCrossRef
104.
go back to reference X. Zhang, Z. Tian, S.-W. Yang, J. Wang, Magnetic manipulation and half-metal prediction of one-dimensional bimetallic organic sandwich molecular wires [CpTM1CpTM2]∞ (TM1 = Ti, Cr, Fe; TM2 = Sc−Co). J. Phys. Chem. C 115, 2948–2953 (2011)CrossRef X. Zhang, Z. Tian, S.-W. Yang, J. Wang, Magnetic manipulation and half-metal prediction of one-dimensional bimetallic organic sandwich molecular wires [CpTM1CpTM2] (TM1 = Ti, Cr, Fe; TM2 = Sc−Co). J. Phys. Chem. C 115, 2948–2953 (2011)CrossRef
105.
go back to reference X. Zhang, J. Han, Y. Liu, J. Wang, Structural, electronic, and magnetic properties of one-dimensional organic bimetal-naphthalene sandwich nanowires. J. Phys. Chem. C 116, 5414–5419 (2012)CrossRef X. Zhang, J. Han, Y. Liu, J. Wang, Structural, electronic, and magnetic properties of one-dimensional organic bimetal-naphthalene sandwich nanowires. J. Phys. Chem. C 116, 5414–5419 (2012)CrossRef
106.
go back to reference L. Horváthová, M. Dubecký, L. Mitas, I. Štich, Spin multiplicity and symmetry breaking in vanadium-benzene complexes. Phys. Rev. Lett. 109, 053001-1–053001-5 (2012)CrossRef L. Horváthová, M. Dubecký, L. Mitas, I. Štich, Spin multiplicity and symmetry breaking in vanadium-benzene complexes. Phys. Rev. Lett. 109, 053001-1–053001-5 (2012)CrossRef
107.
go back to reference K.P. Kepp, Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord. Chem. Rev. 257, 196–209 (2013)CrossRef K.P. Kepp, Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord. Chem. Rev. 257, 196–209 (2013)CrossRef
108.
go back to reference M. Kepenekian, J.-P. Gauyacq, N. Lorente, Difficulties in the ab initio description of electron transport through spin filters. J. Phys. Condens. Matter 26, 104203-1–104203-8 (2014)CrossRef M. Kepenekian, J.-P. Gauyacq, N. Lorente, Difficulties in the ab initio description of electron transport through spin filters. J. Phys. Condens. Matter 26, 104203-1–104203-8 (2014)CrossRef
109.
go back to reference L. Horváthová, R. Derian, L. Mitas, I. Štich, Quantum Monte Carlo study of one-dimensional transition-metal organometallic cluster systems and their suitability as spin filter. Phys. Rev. B Condens. Matter 90, 115414-1–115414-5 (2014)CrossRef L. Horváthová, R. Derian, L. Mitas, I. Štich, Quantum Monte Carlo study of one-dimensional transition-metal organometallic cluster systems and their suitability as spin filter. Phys. Rev. B Condens. Matter 90, 115414-1–115414-5 (2014)CrossRef
110.
go back to reference K. Miyajima, K. Muraoka, M. Hashimoto, T. Yasuike, S. Yabushita, A. Nakajima, K. Kaya, Quasi-band electronic structure of Vn(benzene)n+1 clusters. J. Phys. Chem. A 106, 10777–10781 (2002)CrossRef K. Miyajima, K. Muraoka, M. Hashimoto, T. Yasuike, S. Yabushita, A. Nakajima, K. Kaya, Quasi-band electronic structure of Vn(benzene)n+1 clusters. J. Phys. Chem. A 106, 10777–10781 (2002)CrossRef
111.
go back to reference T. Yasuike, S. Yabushita, Ionization energies and bonding scheme of multiple-decker sandwich clusters: Mn(C6H6)n+1. J. Phys. Chem. A 103, 4533–4542 (1999)CrossRef T. Yasuike, S. Yabushita, Ionization energies and bonding scheme of multiple-decker sandwich clusters: Mn(C6H6)n+1. J. Phys. Chem. A 103, 4533–4542 (1999)CrossRef
112.
go back to reference M.R. Zakin, D.M. Cox, R.O. Brickman, A. Kaldor, Benzene C-D bond activation by free vanadium cluster cations. J. Phys. Chem. 93, 6823–6827 (1989)CrossRef M.R. Zakin, D.M. Cox, R.O. Brickman, A. Kaldor, Benzene C-D bond activation by free vanadium cluster cations. J. Phys. Chem. 93, 6823–6827 (1989)CrossRef
113.
go back to reference T. Masubuchi, K. Ohi, T. Iwasa, A. Nakajima, Experimental and theoretical studies on the electronic properties of vanadium-benzene sandwich cluster anions, VnBzn+1 − (n = 1-5). J. Chem. Phys. 137, 224305-1–224305-9 (2012)CrossRef T. Masubuchi, K. Ohi, T. Iwasa, A. Nakajima, Experimental and theoretical studies on the electronic properties of vanadium-benzene sandwich cluster anions, VnBzn+1 (n = 1-5). J. Chem. Phys. 137, 224305-1–224305-9 (2012)CrossRef
114.
go back to reference U. Even, J. Jortner, D. Noy, N. Lavie, C. Cossart-Magos, Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112, 8068–8071 (2000)CrossRef U. Even, J. Jortner, D. Noy, N. Lavie, C. Cossart-Magos, Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112, 8068–8071 (2000)CrossRef
115.
go back to reference T. Masubuchi, T. Iwasa, A. Nakajima, Experimental and theoretical studies of the structural and electronic properties of vanadium–benzene sandwich clusters and their anions: VnBzn 0/− (n = 1–5) and VnBzn-1 0/− (n = 2–5). J. Chem. Phys. 141, 214304-1–214304-8 (2014)CrossRef T. Masubuchi, T. Iwasa, A. Nakajima, Experimental and theoretical studies of the structural and electronic properties of vanadium–benzene sandwich clusters and their anions: VnBzn 0/− (n = 1–5) and VnBzn-1 0/− (n = 2–5). J. Chem. Phys. 141, 214304-1–214304-8 (2014)CrossRef
116.
go back to reference T. Masubuchi, T. Iwasa, A. Nakajima, Multiple-decker and ring sandwich formation of manganese–benzene organometallic cluster anions: MnnBzn − (n = 1–5 and 18). Phys. Chem. Chem. Phys. 18, 26049–26056 (2016)PubMedCrossRef T. Masubuchi, T. Iwasa, A. Nakajima, Multiple-decker and ring sandwich formation of manganese–benzene organometallic cluster anions: MnnBzn (n = 1–5 and 18). Phys. Chem. Chem. Phys. 18, 26049–26056 (2016)PubMedCrossRef
117.
go back to reference A. Goto, S. Yabushita, Theoretical study on the spin states and intra-cluster spin relaxation of the one-dimensional metal–benzene sandwich clusters: M2(C6H6)3 (M = Sc, Ti, V). Chem. Phys. Lett. 454, 382–386 (2008)CrossRef A. Goto, S. Yabushita, Theoretical study on the spin states and intra-cluster spin relaxation of the one-dimensional metal–benzene sandwich clusters: M2(C6H6)3 (M = Sc, Ti, V). Chem. Phys. Lett. 454, 382–386 (2008)CrossRef
118.
go back to reference K. Judai, K. Sera, S.-i. Amatsutsumi, K. Yagi, T. Yasuike, S. Yabushita, A. Nakajima, K. Kaya, A soft-landing experiment on organometallic cluster ions: Infrared spectroscopy of V(benzene)2 in Ar matrix. Chem. Phys. Lett. 334, 277–284 (2001)CrossRef K. Judai, K. Sera, S.-i. Amatsutsumi, K. Yagi, T. Yasuike, S. Yabushita, A. Nakajima, K. Kaya, A soft-landing experiment on organometallic cluster ions: Infrared spectroscopy of V(benzene)2 in Ar matrix. Chem. Phys. Lett. 334, 277–284 (2001)CrossRef
119.
go back to reference H.-P. Cheng, U. Landman, Controlled deposition, soft landing, and glass formation in nanocluster-surface collisions. Science 260, 1304–1307 (1993)PubMedCrossRef H.-P. Cheng, U. Landman, Controlled deposition, soft landing, and glass formation in nanocluster-surface collisions. Science 260, 1304–1307 (1993)PubMedCrossRef
120.
go back to reference K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, K. Kern, Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 (1996)PubMedCrossRef K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, K. Kern, Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 (1996)PubMedCrossRef
121.
go back to reference S. Nagaoka, T. Matsumoto, E. Okada, M. Mitsui, A. Nakajima, Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-Alkanethiol self-assembled monolayers. J. Phys. Chem. B 110, 16008–16017 (2006)PubMedCrossRef S. Nagaoka, T. Matsumoto, E. Okada, M. Mitsui, A. Nakajima, Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-Alkanethiol self-assembled monolayers. J. Phys. Chem. B 110, 16008–16017 (2006)PubMedCrossRef
122.
go back to reference S. Nagaoka, T. Matsumoto, K. Ikemoto, M. Mitsui, A. Nakajima, Soft-landing isolation of multidecker V2(benzene)3 complexes in an organic monolayer matrix: An infrared spectroscopy and thermal desorption study. J. Am. Chem. Soc. 129, 1528–1529 (2007)PubMedCrossRef S. Nagaoka, T. Matsumoto, K. Ikemoto, M. Mitsui, A. Nakajima, Soft-landing isolation of multidecker V2(benzene)3 complexes in an organic monolayer matrix: An infrared spectroscopy and thermal desorption study. J. Am. Chem. Soc. 129, 1528–1529 (2007)PubMedCrossRef
123.
go back to reference S. Nagaoka, K. Ikemoto, K. Horiuchi, A. Nakajima, Soft- and reactive-landing of Cr(aniline)2 sandwich complexes onto self-assembled monolayers: Separation between functional and binding sites. J. Am. Chem. Soc. 133, 18719–18727 (2011)PubMedCrossRef S. Nagaoka, K. Ikemoto, K. Horiuchi, A. Nakajima, Soft- and reactive-landing of Cr(aniline)2 sandwich complexes onto self-assembled monolayers: Separation between functional and binding sites. J. Am. Chem. Soc. 133, 18719–18727 (2011)PubMedCrossRef
124.
go back to reference F. Huttmann, N. Schleheck, N. Atodiresei, T. Michely, On-surface synthesis of sandwich molecular nanowires on graphene. J. Am. Chem. Soc. 139, 9895–9900 (2017)PubMedCrossRef F. Huttmann, N. Schleheck, N. Atodiresei, T. Michely, On-surface synthesis of sandwich molecular nanowires on graphene. J. Am. Chem. Soc. 139, 9895–9900 (2017)PubMedCrossRef
125.
go back to reference F. Huttmann, N. Rothenbach, S. Kraus, K. Ollefs, L.M. Arruda, M. Bernien, D. Thonig, A. Delin, J. Fransson, K. Kummer, N.B. Brookes, O. Eriksson, W. Kuch, T. Michely, H. Wende, Europium cyclooctatetraene nanowire carpets: A low-dimensional, organometallic, and ferromagnetic insulator. J. Phys. Chem. Lett. 10, 911–917 (2019)PubMedCrossRef F. Huttmann, N. Rothenbach, S. Kraus, K. Ollefs, L.M. Arruda, M. Bernien, D. Thonig, A. Delin, J. Fransson, K. Kummer, N.B. Brookes, O. Eriksson, W. Kuch, T. Michely, H. Wende, Europium cyclooctatetraene nanowire carpets: A low-dimensional, organometallic, and ferromagnetic insulator. J. Phys. Chem. Lett. 10, 911–917 (2019)PubMedCrossRef
Metadata
Title
Electronic Properties of Transition Metal-Benzene Sandwich Clusters
Authors
Tsugunosuke Masubuchi
Atsushi Nakajima
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0006-0_8

Premium Partner