Skip to main content
Top
Published in: Journal of Electronic Materials 10/2021

28-07-2021 | Original Research Article

Electronic Structure and Quantum Transport Properties of 2D SiP: A First-Principles Study

Authors: Wenqiang Liu, Shiying Guo, Gaoyu Liu, Xinyan Xia, Yong Huang, Lili Xu, Tingting Guo, Bo Cai, Shengli Zhang

Published in: Journal of Electronic Materials | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid evolution of microelectronics, the field of integrated circuits is facing unprecedented challenges. Traditional silicon-based transistors cannot maintain the advantages of high performance during the process of further ultra-scaling due to severe short-channel effects. Two-dimensional (2D) materials are potential channel materials that can replace silicon. Herein, 2D SiP is predicted to have a band gap of 1.49 eV with anisotropic electronic properties by means of first-principles calculations, which is suitable as a channel candidate of transistors. Hence, we investigate the ballistic transport properties of 2D SiP double-gate metal oxide semiconductor field-effect transistors (MOSFETs) by using ab initio quantum transport simulations. Despite anisotropic electronic properties of 2D SiP, the performances of monolayer SiP MOSFETs have weak directional dependence due to high valley degeneracy. The n-MOSFETs with 10-nm gate length can fulfill the high-performance requirements of the International Roadmap for Devices and Systems 2020 Edition (IRDS 2020). However, the p-MOSFETs cannot fulfill the demands of IRDS 2020 because of heavy hole effective masses. Considering the appropriate on-current of 1292 μA/μm for SiP n-MOSFETs, 2D SiP could be utilized as a potential channel material in the next-generation FETs.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Nat. Nanotechnol. 9, 768 (2014).CrossRef G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Nat. Nanotechnol. 9, 768 (2014).CrossRef
2.
go back to reference S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q.X. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C.M. Hu, H.S.P. Wong, and A. Javey, Science 354, 99 (2016).CrossRef S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q.X. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C.M. Hu, H.S.P. Wong, and A. Javey, Science 354, 99 (2016).CrossRef
3.
go back to reference C.G. Qiu, F. Liu, L. Xu, B. Deng, M.M. Xiao, J. Si, L. Lin, Z.Y. Zhang, J. Wang, H. Guo, H.L. Peng, and L.M. Peng, Science 361, 387 (2018).CrossRef C.G. Qiu, F. Liu, L. Xu, B. Deng, M.M. Xiao, J. Si, L. Lin, Z.Y. Zhang, J. Wang, H. Guo, H.L. Peng, and L.M. Peng, Science 361, 387 (2018).CrossRef
5.
6.
8.
go back to reference D. Akinwande, C. Huyghebaert, C.H. Wang, M.I. Serna, S. Goossens, L.J. Li, H.S.P. Wong, and F.H.L. Koppens, Nature 573, 507 (2019).CrossRef D. Akinwande, C. Huyghebaert, C.H. Wang, M.I. Serna, S. Goossens, L.J. Li, H.S.P. Wong, and F.H.L. Koppens, Nature 573, 507 (2019).CrossRef
9.
go back to reference E.G. Marin, M. Perucchini, D. Marian, G. Iannaccone, and G. Fiori, IEEE Trans. Elect. Dev. 65, 4167 (2018).CrossRef E.G. Marin, M. Perucchini, D. Marian, G. Iannaccone, and G. Fiori, IEEE Trans. Elect. Dev. 65, 4167 (2018).CrossRef
10.
go back to reference S. L. Zhang, Z. Yan, Y. F. Li, Z. F. Chen, and H. B. Zeng, Angew. Chem., Int. Ed. 54, 3112 (2015). S. L. Zhang, Z. Yan, Y. F. Li, Z. F. Chen, and H. B. Zeng, Angew. Chem., Int. Ed. 54, 3112 (2015).
11.
go back to reference S. L. Zhang, M. Q. Xie, F. Y. Li, Z. Yan, Y. F. Li, E. J. Kan, W. Liu, Z. F. Chen, and H. B. Zeng, Angew. Chem., Int. Ed. 55, 1666 (2016). S. L. Zhang, M. Q. Xie, F. Y. Li, Z. Yan, Y. F. Li, E. J. Kan, W. Liu, Z. F. Chen, and H. B. Zeng, Angew. Chem., Int. Ed. 55, 1666 (2016).
12.
go back to reference S.L. Zhang, S.Y. Guo, Z.F. Chen, Y.L. Wang, H.J. Gao, J. Gomez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H.B. Zeng, Chem. Soc. Rev. 47, 982 (2018).CrossRef S.L. Zhang, S.Y. Guo, Z.F. Chen, Y.L. Wang, H.J. Gao, J. Gomez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H.B. Zeng, Chem. Soc. Rev. 47, 982 (2018).CrossRef
13.
go back to reference S.Y. Guo, Y.P. Zhang, Y.Q. Ge, S.L. Zhang, H.B. Zeng, and H. Zhang, Adv. Mater. 31, 1902352 (2019).CrossRef S.Y. Guo, Y.P. Zhang, Y.Q. Ge, S.L. Zhang, H.B. Zeng, and H. Zhang, Adv. Mater. 31, 1902352 (2019).CrossRef
14.
go back to reference S. Y. Guo, Y. Y. Wang, X. M. Hu, S. L. Zhang, H. Z. Qu, W. H. Zhou, Z. H. Wu, X. H. Liu, and H. B. Zeng, Phys. Rev. Appl. 14, 044031 (2020). S. Y. Guo, Y. Y. Wang, X. M. Hu, S. L. Zhang, H. Z. Qu, W. H. Zhou, Z. H. Wu, X. H. Liu, and H. B. Zeng, Phys. Rev. Appl. 14, 044031 (2020).
15.
go back to reference H.Z. Qu, S.Y. Guo, W.H. Zhou, and S.L. Zhang, IEEE Electron Device Lett. 42, 66 (2021).CrossRef H.Z. Qu, S.Y. Guo, W.H. Zhou, and S.L. Zhang, IEEE Electron Device Lett. 42, 66 (2021).CrossRef
16.
go back to reference W. H. Zhou, S. L. Zhang, J. Cao, Z. H. Wu, Y. Y. Wang, Y. W. Zhang, Z. Yan, H. Z. Qu, and H. B. Zeng, Nano Energy 81, 105642 (2021). W. H. Zhou, S. L. Zhang, J. Cao, Z. H. Wu, Y. Y. Wang, Y. W. Zhang, Z. Yan, H. Z. Qu, and H. B. Zeng, Nano Energy 81, 105642 (2021).
17.
go back to reference H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.F. Xu, D. Tomanek, and P.D. Ye, ACS Nano 8, 4033 (2014).CrossRef H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.F. Xu, D. Tomanek, and P.D. Ye, ACS Nano 8, 4033 (2014).CrossRef
18.
go back to reference D. Costanzo, S. Jo, H. Berger, and A.F. Morpurgo, Nat. Nanotechnol. 11, 339 (2016).CrossRef D. Costanzo, S. Jo, H. Berger, and A.F. Morpurgo, Nat. Nanotechnol. 11, 339 (2016).CrossRef
19.
go back to reference D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zolyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patane, L. Eaves, I.V. Grigorieva, V.I. Fal’ko, A.K. Geim, and Y. Cao, Nat. Nanotechnol. 12, 223 (2017).CrossRef D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zolyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patane, L. Eaves, I.V. Grigorieva, V.I. Fal’ko, A.K. Geim, and Y. Cao, Nat. Nanotechnol. 12, 223 (2017).CrossRef
20.
go back to reference A. Nourbakhsh, A. Zubair, R.N. Sajjad, K.G.A. Tavakkoli, W. Chen, S. Fang, X. Ling, J. Kong, M.S. Dresselhaus, E. Kaxiras, K.K. Berggren, D. Antoniadis, and T. Palacios, Nano Lett. 16, 7798 (2016).CrossRef A. Nourbakhsh, A. Zubair, R.N. Sajjad, K.G.A. Tavakkoli, W. Chen, S. Fang, X. Ling, J. Kong, M.S. Dresselhaus, E. Kaxiras, K.K. Berggren, D. Antoniadis, and T. Palacios, Nano Lett. 16, 7798 (2016).CrossRef
21.
go back to reference W. Cao, J.H. Kang, D. Sarkar, W. Liu, and K. Banerjee, IEEE Trans. Electron Devices 62, 3459 (2015).CrossRef W. Cao, J.H. Kang, D. Sarkar, W. Liu, and K. Banerjee, IEEE Trans. Electron Devices 62, 3459 (2015).CrossRef
22.
go back to reference L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, and Y.B. Zhang, Nat. Nanotechnol. 9, 372 (2014).CrossRef L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, and Y.B. Zhang, Nat. Nanotechnol. 9, 372 (2014).CrossRef
23.
go back to reference F. Liu, Y.J. Wang, X.Y. Liu, J. Wang, and H. Guo, IEEE Trans. Electron Devices 61, 3871 (2014).CrossRef F. Liu, Y.J. Wang, X.Y. Liu, J. Wang, and H. Guo, IEEE Trans. Electron Devices 61, 3871 (2014).CrossRef
24.
go back to reference R. G. Quhe, Q. H. Li, Q. X. Zhang, Y. Y. Wang, H. Zhang, J. Z. Li, X. Y. Zhang, D. X. Chen, K. H. Liu, Y. Ye, L. Dai, F. Pan, M. Lei, and J. Lu, Phys. Rev. Appl. 10, 024022 (2018). R. G. Quhe, Q. H. Li, Q. X. Zhang, Y. Y. Wang, H. Zhang, J. Z. Li, X. Y. Zhang, D. X. Chen, K. H. Liu, Y. Ye, L. Dai, F. Pan, M. Lei, and J. Lu, Phys. Rev. Appl. 10, 024022 (2018).
25.
go back to reference E.G. Marin, D. Marian, G. Iannaccone, and G. Fiori, IEEE Electron Device Lett. 39, 626 (2018).CrossRef E.G. Marin, D. Marian, G. Iannaccone, and G. Fiori, IEEE Electron Device Lett. 39, 626 (2018).CrossRef
26.
go back to reference Y.Y. Wang, R.X. Fei, R. Quhe, J.Z. Li, H. Zhang, X.Y. Zhang, B.W. Shi, L. Xiao, Z.G. Song, J.B. Yang, J.J. Shi, F. Pan, and J. Lu, ACS Appl. Mater. Interfaces 10, 23344 (2018).CrossRef Y.Y. Wang, R.X. Fei, R. Quhe, J.Z. Li, H. Zhang, X.Y. Zhang, B.W. Shi, L. Xiao, Z.G. Song, J.B. Yang, J.J. Shi, F. Pan, and J. Lu, ACS Appl. Mater. Interfaces 10, 23344 (2018).CrossRef
27.
go back to reference R.N. Somaiya, Y.A. Sonvane, and S.K. Gupta, Phys. Chem. Chem. Phys. 22, 3990 (2020).CrossRef R.N. Somaiya, Y.A. Sonvane, and S.K. Gupta, Phys. Chem. Chem. Phys. 22, 3990 (2020).CrossRef
28.
go back to reference M. Ashton, S. B. Sinnott, and R. G. Hennig, Appl. Phys. Lett. 109, 192103 (2016). M. Ashton, S. B. Sinnott, and R. G. Hennig, Appl. Phys. Lett. 109, 192103 (2016).
29.
go back to reference B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S. H. Wei, Phys. Rev. B 91, 121401 (2015). B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S. H. Wei, Phys. Rev. B 91, 121401 (2015).
30.
go back to reference Z. N. Ma, J. B. Zhuang, X. Zhang, and Z. Zhou, Front. Phys. 13, 138104 (2018). Z. N. Ma, J. B. Zhuang, X. Zhang, and Z. Zhou, Front. Phys. 13, 138104 (2018).
31.
go back to reference W. Zhang, J.R. Yin, Y.H. Ding, Y. Jiang, and P. Zhang, Nanoscale 10, 16750 (2018).CrossRef W. Zhang, J.R. Yin, Y.H. Ding, Y. Jiang, and P. Zhang, Nanoscale 10, 16750 (2018).CrossRef
33.
go back to reference S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanpera, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys. Condens. Matter 32, 015901 (2020). S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanpera, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys. Condens. Matter 32, 015901 (2020).
34.
go back to reference M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002). M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
35.
36.
go back to reference M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).CrossRef M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).CrossRef
38.
go back to reference R.G. Quhe, J.C. Liu, J.X. Wu, J. Yang, Y.Y. Wang, Q.H. Li, T.R. Li, Y. Guo, J.B. Yang, H.L. Peng, M. Lei, and J. Lu, Nanoscale 11, 532 (2019).CrossRef R.G. Quhe, J.C. Liu, J.X. Wu, J. Yang, Y.Y. Wang, Q.H. Li, T.R. Li, Y. Guo, J.B. Yang, H.L. Peng, M. Lei, and J. Lu, Nanoscale 11, 532 (2019).CrossRef
39.
go back to reference G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Nat. Commun. 7, 12585 (2016).CrossRef G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Nat. Commun. 7, 12585 (2016).CrossRef
Metadata
Title
Electronic Structure and Quantum Transport Properties of 2D SiP: A First-Principles Study
Authors
Wenqiang Liu
Shiying Guo
Gaoyu Liu
Xinyan Xia
Yong Huang
Lili Xu
Tingting Guo
Bo Cai
Shengli Zhang
Publication date
28-07-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 10/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09124-y

Other articles of this Issue 10/2021

Journal of Electronic Materials 10/2021 Go to the issue