Skip to main content
Top
Published in: Cellulose 6/2007

01-12-2007

Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter

Authors: Santi Tungprapa, Tanarinthorn Puangparn, Monchawan Weerasombut, Ittipol Jangchud, Porntiva Fakum, Somsak Semongkhol, Chidchanok Meechaisue, Pitt Supaphol

Published in: Cellulose | Issue 6/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper reports an investigation of the effects of solvent system, solution concentration, and applied electrostatic field strength (EFS) on the morphological appearance and/or size of as-spun cellulose acetate (CA) products. The single-solvent systems were acetone, chloroform, N,N -dimethylformamide (DMF), dichloromethane (DCM), methanol (MeOH), formic acid, and pyridine. The mixed-solvent systems were acetone–DMAc, chloroform–MeOH, and DCM–MeOH. Chloroform, DMF, DCM, MeOH, formic acid, and pyridine were able to dissolve CA, forming clear solutions (at 5% w/v), but electrospinning of these solutions produced mainly discrete beads. In contrast, electrospinning of the solution of CA in acetone produced short and beaded fibers. At the same solution concentration of 5% (w/v) electrospinning of the CA solutions was improved by addition of MeOH to either chloroform or DCM. For all the solvent systems investigated smooth fibers were obtained from 16% (w/v) CA solutions in 1:1, 2:1, and 3:1 (v/v) acetone–DMAc, 14–20% (w/v) CA solutions in 2:1 (v/v) acetone–DMAc, and 8–12% (w/v) CA solutions in 4:1 (v/v) DCM–MeOH. For the as-spun fibers from CA solutions in acetone–DMAc the average diameter ranged between 0.14 and 0.37 μm whereas for the fibers from solutions in DCM–MeOH it ranged between 0.48 and 1.58 μm. After submersion in distilled water for 24 h the as-spun CA fibers swelled appreciably (i.e. from 620 to 1110%) but the physical integrity of the fibrous structure remained intact.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36:71–79CrossRef Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36:71–79CrossRef
go back to reference Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 11:1362–1365CrossRef Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 11:1362–1365CrossRef
go back to reference Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407CrossRef Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407CrossRef
go back to reference Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272CrossRef Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272CrossRef
go back to reference Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160CrossRef Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160CrossRef
go back to reference Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45:190–195CrossRef Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45:190–195CrossRef
go back to reference Jaeger R, Bergshoef MM, Martin i Batlle C, Schoenherr H, Vansco GJ (1998) Electrospinning of ultra thin polymer fibers. Macromol Symp 127:141–150 Jaeger R, Bergshoef MM, Martin i Batlle C, Schoenherr H, Vansco GJ (1998) Electrospinning of ultra thin polymer fibers. Macromol Symp 127:141–150
go back to reference Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41:409–421CrossRef Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41:409–421CrossRef
go back to reference Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131CrossRef Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131CrossRef
go back to reference Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci—Polym Phys 40:2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci—Polym Phys 40:2119–2129CrossRef
go back to reference Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membrane Sci 265:115–123CrossRef Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membrane Sci 265:115–123CrossRef
go back to reference Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution condition on morphology and average fiber diameter. Macromol Chem Phys 205:2327–2338CrossRef Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution condition on morphology and average fiber diameter. Macromol Chem Phys 205:2327–2338CrossRef
go back to reference Pattamaprom C, Hongrojjanawiwat W, Koombhongse P, Supaphol P, Jarusuwannapoom T, Rangkupan R (2006) The influence of solvent properties and functionality on the electrospinnability of polystyrene nanofibers. Macromol Mater Eng 291:840–847CrossRef Pattamaprom C, Hongrojjanawiwat W, Koombhongse P, Supaphol P, Jarusuwannapoom T, Rangkupan R (2006) The influence of solvent properties and functionality on the electrospinnability of polystyrene nanofibers. Macromol Mater Eng 291:840–847CrossRef
go back to reference Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRef Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRef
go back to reference Son WK, Youk JH, Lee TS, Park YH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci—Polym Phys 42:5–11CrossRef Son WK, Youk JH, Lee TS, Park YH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci—Polym Phys 42:5–11CrossRef
go back to reference Supaphol P, Mit-uppatham C, Nithitanakul M (2005) Ultrafine electrospun polyamide-6 fibers: effect of emitting electrode polarity on morphology and average fiber diameter. J Polym Sci—Polym Phys 43:3699–3712CrossRef Supaphol P, Mit-uppatham C, Nithitanakul M (2005) Ultrafine electrospun polyamide-6 fibers: effect of emitting electrode polarity on morphology and average fiber diameter. J Polym Sci—Polym Phys 43:3699–3712CrossRef
go back to reference Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17:2317–2329CrossRef Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17:2317–2329CrossRef
go back to reference Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P (2006) Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles. J Nanosci Nanotechnol 6:514–522CrossRef Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P (2006) Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles. J Nanosci Nanotechnol 6:514–522CrossRef
Metadata
Title
Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter
Authors
Santi Tungprapa
Tanarinthorn Puangparn
Monchawan Weerasombut
Ittipol Jangchud
Porntiva Fakum
Somsak Semongkhol
Chidchanok Meechaisue
Pitt Supaphol
Publication date
01-12-2007
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2007
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-007-9113-4

Other articles of this Issue 6/2007

Cellulose 6/2007 Go to the issue