Skip to main content
Top
Published in: Journal of Materials Science 5/2020

11-11-2019 | Materials for life sciences

Electrospun chitosan/nanocrystalline cellulose-graft-poly(N-vinylcaprolactam) nanofibers as the reinforced scaffold for tissue engineering

Authors: Marjan Ghorbani, Parinaz Nezhad-Mokhtari, Hessamaddin Sohrabi, Leila Roshangar

Published in: Journal of Materials Science | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last years, chitosan (CS) nanofibers as one of the biodegradable biomaterials in nature for tissue engineering and related fields, including wound healing and cell–material interaction, have been widely used. For this purpose, we prepared the reinforced CS/nanocrystals cellulose-graft-poly(N-vinylcaprolactam) (CS/NCC-g-PVCL) nanofibers via the electrospinning technique. Fabricated nanofibers were characterized and studied for their structural, morphological, thermal stability, as well as mechanical and hydrophilic properties. Uniform nanofibers were achieved, and NCC-g-PVCL contents were partially embedded into CS nanofibers, as revealed in SEM analyses. Incorporation of NCC-g-PVCL contents (0.5, 2.5, and 5 wt%) enhanced the average fiber diameter of the obtained nanofibers from 100 nm (neat CS) to ∼ 350 nm [CS/NCC-g-PVCL (5 wt%)] and improved the nanofibers thermal stability. Additionally, among the CS/NCC-g-PVCL nanocomposite fibers, those loaded with 5 wt% NCC-g-PVCL had the best mechanical properties. The water contact angle of nanocomposite nanofibers increased with elevation of the weight content of NCC-g-PVCL. Cell culture results showed that the prepared nanofibers had better cytocompatibility and proliferation than neat CS nanofibers. The results proposed that the developed CS/NCC-g-PVCL nanocomposite nanofibers were promising as new biomaterials to be applied in the area of skin tissue engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433CrossRef Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433CrossRef
2.
go back to reference Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19CrossRef Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19CrossRef
3.
go back to reference Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS (2019) Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo-and enzymatic-crosslinking methods. Int J Biol Macromol 139:760–772CrossRef Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS (2019) Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo-and enzymatic-crosslinking methods. Int J Biol Macromol 139:760–772CrossRef
4.
go back to reference Al-Enizi A, Zagho M, Elzatahry A (2018) Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials 8(4):259CrossRef Al-Enizi A, Zagho M, Elzatahry A (2018) Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials 8(4):259CrossRef
5.
go back to reference He M, Callanan A (2012) Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng Part B: Rev 19(3):194–208CrossRef He M, Callanan A (2012) Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng Part B: Rev 19(3):194–208CrossRef
6.
go back to reference Vahedi P, Jarolmasjed S, Shafaei H, Roshangar L, Rad JS, Ahmadian E (2019) In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue Cell 57:49–56CrossRef Vahedi P, Jarolmasjed S, Shafaei H, Roshangar L, Rad JS, Ahmadian E (2019) In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue Cell 57:49–56CrossRef
7.
go back to reference Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS (2019) A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 117:64–76CrossRef Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS (2019) A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 117:64–76CrossRef
8.
go back to reference Zulkifli FH, Hussain FSJ, Rasad MSBA, Yusoff MM (2014) Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohyd Polym 114:238–245CrossRef Zulkifli FH, Hussain FSJ, Rasad MSBA, Yusoff MM (2014) Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohyd Polym 114:238–245CrossRef
9.
go back to reference Ridolfi DM, Lemes AP, de Oliveira S, Justo GZ, Palladino MV, Durán N (2017) Electrospun poly (ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose 24(8):3353–3365CrossRef Ridolfi DM, Lemes AP, de Oliveira S, Justo GZ, Palladino MV, Durán N (2017) Electrospun poly (ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose 24(8):3353–3365CrossRef
10.
go back to reference Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11(1–2):101–109CrossRef Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11(1–2):101–109CrossRef
11.
go back to reference Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci 99(8):5133–5138CrossRef Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci 99(8):5133–5138CrossRef
12.
go back to reference Luo J, Zhou Q, Sun J, Liu R, Liu X (2014) Micelle-assisted synthesis of PANI nanoparticles and application as particulate emulsifier. Colloid Polym Sci 292(3):653–660CrossRef Luo J, Zhou Q, Sun J, Liu R, Liu X (2014) Micelle-assisted synthesis of PANI nanoparticles and application as particulate emulsifier. Colloid Polym Sci 292(3):653–660CrossRef
13.
go back to reference James R, Toti US, Laurencin CT, Kumbar SG (2011) Electrospun nanofibrous scaffolds for engineering soft connective tissues. In: Biomedical nanotechnology. Springer, pp 243–258 James R, Toti US, Laurencin CT, Kumbar SG (2011) Electrospun nanofibrous scaffolds for engineering soft connective tissues. In: Biomedical nanotechnology. Springer, pp 243–258
14.
go back to reference Chahal S, Kumar A, Hussian FSJ (2019) Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 30:1308–1355CrossRef Chahal S, Kumar A, Hussian FSJ (2019) Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 30:1308–1355CrossRef
15.
go back to reference Gu BK, Ismail YA, Spinks GM, Kim SI, So I, Kim SJ (2009) A linear actuation of polymeric nanofibrous bundle for artificial muscles. Chem Mater 21(3):511–515CrossRef Gu BK, Ismail YA, Spinks GM, Kim SI, So I, Kim SJ (2009) A linear actuation of polymeric nanofibrous bundle for artificial muscles. Chem Mater 21(3):511–515CrossRef
16.
go back to reference Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703CrossRef Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703CrossRef
17.
go back to reference Cho S-Y, Park H-H, Jin H-J (2012) Controlling pore size of electrospun silk fibroin scaffold for tissue engineering. Polym Korea 36(5):651–655CrossRef Cho S-Y, Park H-H, Jin H-J (2012) Controlling pore size of electrospun silk fibroin scaffold for tissue engineering. Polym Korea 36(5):651–655CrossRef
18.
go back to reference Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621CrossRef Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621CrossRef
19.
go back to reference Ramazani S, Rostami M, Raeisi M, Tabibiazar M, Ghorbani M (2019) Fabrication of food-grade nanofibers of whey protein Isolate-Guar gum using the electrospinning method. Food Hydrocolloids 90:99–104CrossRef Ramazani S, Rostami M, Raeisi M, Tabibiazar M, Ghorbani M (2019) Fabrication of food-grade nanofibers of whey protein Isolate-Guar gum using the electrospinning method. Food Hydrocolloids 90:99–104CrossRef
20.
go back to reference Mo X, Sun B, Wu T, Li D (2019) Electrospun nanofibers for tissue engineering. In: Electrospinning: nanofabrication and applications. Elsevier, pp 719–734 Mo X, Sun B, Wu T, Li D (2019) Electrospun nanofibers for tissue engineering. In: Electrospinning: nanofabrication and applications. Elsevier, pp 719–734
21.
go back to reference Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L (2010) Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 355(1–2):53–59CrossRef Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L (2010) Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 355(1–2):53–59CrossRef
22.
go back to reference Dongargaonkar AA, Bowlin GL, Yang H (2013) Electrospun blends of gelatin and gelatin–dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromol 14(11):4038–4045CrossRef Dongargaonkar AA, Bowlin GL, Yang H (2013) Electrospun blends of gelatin and gelatin–dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromol 14(11):4038–4045CrossRef
23.
go back to reference Enayati MS, Behzad T, Sajkiewicz P, Rafienia M, Bagheri R, Ghasemi-Mobarakeh L, Kolbuk D, Pahlevanneshan Z, Bonakdar SH (2018) Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res, Part A 106(4):1111–1120CrossRef Enayati MS, Behzad T, Sajkiewicz P, Rafienia M, Bagheri R, Ghasemi-Mobarakeh L, Kolbuk D, Pahlevanneshan Z, Bonakdar SH (2018) Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res, Part A 106(4):1111–1120CrossRef
24.
go back to reference Muzzarelli RA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohyd Polym 76(2):167–182CrossRef Muzzarelli RA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohyd Polym 76(2):167–182CrossRef
25.
go back to reference Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromol 2(3):765–772CrossRef Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromol 2(3):765–772CrossRef
26.
go back to reference Park J-K, Nah J-W, Choi C (2015) Thermosensitive chitosan-based hydrogel with growth factor as adhesion barrier. Polym Korea 39(3):480–486CrossRef Park J-K, Nah J-W, Choi C (2015) Thermosensitive chitosan-based hydrogel with growth factor as adhesion barrier. Polym Korea 39(3):480–486CrossRef
27.
go back to reference Kim S, Jo S, Shin E, Kim D, Noh I (2012) Evaluations of nerve cell compatibility of self cross-linking chitosan-poly (ethylene oxide) hydrogel. Tissue Eng Regen Med 9(2):84–91CrossRef Kim S, Jo S, Shin E, Kim D, Noh I (2012) Evaluations of nerve cell compatibility of self cross-linking chitosan-poly (ethylene oxide) hydrogel. Tissue Eng Regen Med 9(2):84–91CrossRef
28.
go back to reference Qasim S, Zafar M, Najeeb S, Khurshid Z, Shah A, Husain S, Rehman I (2018) Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 19(2):407CrossRef Qasim S, Zafar M, Najeeb S, Khurshid Z, Shah A, Husain S, Rehman I (2018) Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 19(2):407CrossRef
29.
go back to reference Yang S, Liu Y, Jiang Z, Gu J, Zhang D (2018) Thermal and mechanical performance of electrospun chitosan/poly (vinyl alcohol) nanofibers with graphene oxide. Adv Compos Hybrid Mater 1(4):722–730CrossRef Yang S, Liu Y, Jiang Z, Gu J, Zhang D (2018) Thermal and mechanical performance of electrospun chitosan/poly (vinyl alcohol) nanofibers with graphene oxide. Adv Compos Hybrid Mater 1(4):722–730CrossRef
30.
go back to reference Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294CrossRef Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294CrossRef
31.
go back to reference Domingues RM, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15(7):2327–2346CrossRef Domingues RM, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15(7):2327–2346CrossRef
32.
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33 10.1007/s10853-009-3874-0 CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33 10.1007/s10853-009-3874-0 CrossRef
33.
go back to reference Huang J, Liu L, Yao J (2011) Electrospinning of Bombyx mori silk fibroin nanofiber mats reinforced by cellulose nanowhiskers. Fibers Polym 12(8):1002–1006CrossRef Huang J, Liu L, Yao J (2011) Electrospinning of Bombyx mori silk fibroin nanofiber mats reinforced by cellulose nanowhiskers. Fibers Polym 12(8):1002–1006CrossRef
34.
go back to reference Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5(9):3847–3854CrossRef Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5(9):3847–3854CrossRef
35.
go back to reference Rao KM, Rao KK, Sudhakar P, Rao KC, Subha M (2013) Synthesis and characterization of biodegradable poly (vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. J Appl Pharm Sci 3(06):061–069 Rao KM, Rao KK, Sudhakar P, Rao KC, Subha M (2013) Synthesis and characterization of biodegradable poly (vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. J Appl Pharm Sci 3(06):061–069
36.
go back to reference Nguyen TTT, Tae B, Park JS (2011) Synthesis and characterization of nanofiber webs of chitosan/poly (vinyl alcohol) blends incorporated with silver nanoparticles. J Mater Sci 46(20):6528–6537 10.1007/s10853-011-5599-0 CrossRef Nguyen TTT, Tae B, Park JS (2011) Synthesis and characterization of nanofiber webs of chitosan/poly (vinyl alcohol) blends incorporated with silver nanoparticles. J Mater Sci 46(20):6528–6537 10.1007/s10853-011-5599-0 CrossRef
37.
go back to reference Başaran İ, Oral A (2018) Grafting of poly (ε-caprolactone) on electrospun gelatin nanofiber through surface-initiated ring-opening polymerization. Int J Polym Mater Polym Biomater 67(18):1051–1058CrossRef Başaran İ, Oral A (2018) Grafting of poly (ε-caprolactone) on electrospun gelatin nanofiber through surface-initiated ring-opening polymerization. Int J Polym Mater Polym Biomater 67(18):1051–1058CrossRef
38.
go back to reference Zhang J, Wu Q, Li M-C, Song K, Sun X, Lee S-Y, Lei T (2017) Thermoresponsive copolymer poly (N-Vinylcaprolactam) grafted cellulose nanocrystals: synthesis, structure, and properties. ACS Sustain Chem Eng 5(8):7439–7447CrossRef Zhang J, Wu Q, Li M-C, Song K, Sun X, Lee S-Y, Lei T (2017) Thermoresponsive copolymer poly (N-Vinylcaprolactam) grafted cellulose nanocrystals: synthesis, structure, and properties. ACS Sustain Chem Eng 5(8):7439–7447CrossRef
39.
go back to reference Liu L, Bai S, Yang H, Li S, Quan J, Zhu L, Nie H (2016) Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: the effects of hydrophilicity/hydrophobicity of a drug. Mater Sci Eng, C 67:581–589CrossRef Liu L, Bai S, Yang H, Li S, Quan J, Zhu L, Nie H (2016) Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: the effects of hydrophilicity/hydrophobicity of a drug. Mater Sci Eng, C 67:581–589CrossRef
40.
go back to reference Li B, Cao X, Luo Z (2017) Photopolymerization and characterization of polyacrylamide/modified nanocrysatlline cellulose nanocomposite hydrogels. Polym Mater Sci Eng 4:5 Li B, Cao X, Luo Z (2017) Photopolymerization and characterization of polyacrylamide/modified nanocrysatlline cellulose nanocomposite hydrogels. Polym Mater Sci Eng 4:5
41.
go back to reference Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W, Zhang Y (2015) Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids Surf, B 132:177–184CrossRef Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W, Zhang Y (2015) Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids Surf, B 132:177–184CrossRef
42.
go back to reference Yu H-Y, Qin Z-Y (2014) Surface grafting of cellulose nanocrystals with poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohyd Polym 101:471–478CrossRef Yu H-Y, Qin Z-Y (2014) Surface grafting of cellulose nanocrystals with poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohyd Polym 101:471–478CrossRef
Metadata
Title
Electrospun chitosan/nanocrystalline cellulose-graft-poly(N-vinylcaprolactam) nanofibers as the reinforced scaffold for tissue engineering
Authors
Marjan Ghorbani
Parinaz Nezhad-Mokhtari
Hessamaddin Sohrabi
Leila Roshangar
Publication date
11-11-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04115-1

Other articles of this Issue 5/2020

Journal of Materials Science 5/2020 Go to the issue

Premium Partners