Skip to main content
Top
Published in: Journal of Materials Science 3/2019

11-10-2018 | Polymers

Electrospun poly(vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator

Authors: Bolun Sun, Xiang Li, Rui Zhao, He Ji, Ju Qiu, Nan Zhang, Dayong He, Ce Wang

Published in: Journal of Materials Science | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanogenerators which efficiently convert mechanical forces, vibrations and sound to electrical energy have attracted much attention and showed potential application as sustainable energy source for powering miniature devices. In this work, we fabricated a piezoelectric acoustoelectric nanogenerator using poly(vinylidene fluoride)-zinc oxide composite fiber membrane with hierarchical microstructure by electrospinning and hydrothermal techniques. The prepared PVDF–ZnO acoustoelectric nanogenerator (PVDF–ZnOANG) was able to generate voltage and current output of 1.12 V and 1.6 μA with a power density output of 0.2 μW cm−2 (50 μW cm−3) in optimized sound condition (140 Hz, 116 dB). Under the optimized sound condition, the electric energy generated by the prepared PVDF–ZnOANG could charge a capacitor up to 1.3 V in 3 min. The PVDF–ZnOANG generated higher voltage output under sound of low frequency and high sound pressure level and therefore might be a promising power source for noise energy harvesting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28:4283–4305CrossRef Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28:4283–4305CrossRef
2.
go back to reference Wu H, Huang Y, Xu F, Duan Y, Yin Z (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28:9881–9919CrossRef Wu H, Huang Y, Xu F, Duan Y, Yin Z (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28:9881–9919CrossRef
3.
go back to reference Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Man 12(6):1129–1141CrossRef Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Man 12(6):1129–1141CrossRef
4.
go back to reference Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRef Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRef
5.
go back to reference Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943CrossRef Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943CrossRef
6.
go back to reference Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRef Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRef
7.
go back to reference Lin YF, Song J, Ding Y, Lu SY (2008) Piezoelectric nanogenerator using CdS nanowires. Appl Phys Lett 92:022105CrossRef Lin YF, Song J, Ding Y, Lu SY (2008) Piezoelectric nanogenerator using CdS nanowires. Appl Phys Lett 92:022105CrossRef
8.
go back to reference Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRef Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRef
9.
go back to reference Lang C, Fang J, Shao H, Ding X, Lin T (2016) High-sensitivity acoustic sensors from nanofibre webs. Nat Commun 7:11108CrossRef Lang C, Fang J, Shao H, Ding X, Lin T (2016) High-sensitivity acoustic sensors from nanofibre webs. Nat Commun 7:11108CrossRef
10.
go back to reference Cha S, Kim SM, Kim H et al (2011) Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett 11:5142–5147CrossRef Cha S, Kim SM, Kim H et al (2011) Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett 11:5142–5147CrossRef
11.
go back to reference Li B, Laviage AJ, You JH, Kim YJ (2013) Harvesting low-frequency acoustic energy using multiple PVDF beam arrays in quarter-wavelength acoustic resonator. Appl Acoust 74:1271–1278CrossRef Li B, Laviage AJ, You JH, Kim YJ (2013) Harvesting low-frequency acoustic energy using multiple PVDF beam arrays in quarter-wavelength acoustic resonator. Appl Acoust 74:1271–1278CrossRef
12.
go back to reference Lang C, Fang J, Shao H, Wang H, Yan G, Ding X, Lin T (2017) High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy 35:146–153CrossRef Lang C, Fang J, Shao H, Wang H, Yan G, Ding X, Lin T (2017) High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy 35:146–153CrossRef
13.
go back to reference Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371CrossRef Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371CrossRef
14.
go back to reference Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4:4508–4512CrossRef Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4:4508–4512CrossRef
15.
go back to reference Soin N, Shah TH, Anand SC et al (2014) Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ Sci 7:1670–1679CrossRef Soin N, Shah TH, Anand SC et al (2014) Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ Sci 7:1670–1679CrossRef
16.
go back to reference Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21:11088–11091CrossRef Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21:11088–11091CrossRef
17.
go back to reference Yu H, Huang T, Lu M, Mao M, Zhang Q, Wang H (2013) Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24:405401CrossRef Yu H, Huang T, Lu M, Mao M, Zhang Q, Wang H (2013) Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24:405401CrossRef
18.
go back to reference Garain S, Jana S, Sinha TK, Mandal D (2016) Design of in situ poled Ce3+ doped electrospun PVDF/graphene composite nanofibers for fabrication of nano-pressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces 8:4532–4540CrossRef Garain S, Jana S, Sinha TK, Mandal D (2016) Design of in situ poled Ce3+ doped electrospun PVDF/graphene composite nanofibers for fabrication of nano-pressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces 8:4532–4540CrossRef
19.
go back to reference Ghosh SK, Biswas A, Sen S, Das C, Henkel K, Schmeisser D, Mandal D (2016) Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy 30:621–629CrossRef Ghosh SK, Biswas A, Sen S, Das C, Henkel K, Schmeisser D, Mandal D (2016) Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy 30:621–629CrossRef
20.
go back to reference Zhang G, Liao Q, Zhang Z, Liang Q, Zhao Y, Zheng X, Zhang Y (2016) Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv Sci 3:1500257CrossRef Zhang G, Liao Q, Zhang Z, Liang Q, Zhao Y, Zheng X, Zhang Y (2016) Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv Sci 3:1500257CrossRef
21.
go back to reference Li Z, Zhang X, Li G (2014) In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO–PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys Chem Chem Phys 16:5475–5479CrossRef Li Z, Zhang X, Li G (2014) In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO–PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys Chem Chem Phys 16:5475–5479CrossRef
22.
go back to reference Hasan MR, Baek SH, Seong KS, Kim JH, Park IK (2015) Hierarchical ZnO nanorods on Si micro-pillar arrays for performance enhancement of piezoelectric nanogenerators. ACS Appl Mater Interfaces 7:5768–5774CrossRef Hasan MR, Baek SH, Seong KS, Kim JH, Park IK (2015) Hierarchical ZnO nanorods on Si micro-pillar arrays for performance enhancement of piezoelectric nanogenerators. ACS Appl Mater Interfaces 7:5768–5774CrossRef
23.
go back to reference Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM, Chou L, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764CrossRef Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM, Chou L, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764CrossRef
24.
go back to reference Chang Z (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem Commun 2011:4427–4429CrossRef Chang Z (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem Commun 2011:4427–4429CrossRef
25.
go back to reference Feng W, Chen J, Hou C (2014) Growth and characterization of ZnO needles. Appl Nanosci 4:15–18CrossRef Feng W, Chen J, Hou C (2014) Growth and characterization of ZnO needles. Appl Nanosci 4:15–18CrossRef
26.
go back to reference Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604CrossRef Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604CrossRef
27.
go back to reference Shin SH, Kim YH, Lee MH, Jung JY, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8(3):2766–2773CrossRef Shin SH, Kim YH, Lee MH, Jung JY, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8(3):2766–2773CrossRef
28.
go back to reference Zhang L, Bai S, Su C, Zheng Y, Qin Y, Xu C, Wang ZL (2015) A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Adv Funct Mater 25:5794–5798CrossRef Zhang L, Bai S, Su C, Zheng Y, Qin Y, Xu C, Wang ZL (2015) A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Adv Funct Mater 25:5794–5798CrossRef
29.
go back to reference Masghouni N, Burton J, Philen MK, Al-Haik M (2015) Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam. Nanotechnology 26:095401CrossRef Masghouni N, Burton J, Philen MK, Al-Haik M (2015) Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam. Nanotechnology 26:095401CrossRef
Metadata
Title
Electrospun poly(vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator
Authors
Bolun Sun
Xiang Li
Rui Zhao
He Ji
Ju Qiu
Nan Zhang
Dayong He
Ce Wang
Publication date
11-10-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 3/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2985-x

Other articles of this Issue 3/2019

Journal of Materials Science 3/2019 Go to the issue

Premium Partners