Skip to main content
Top
Published in:

09-04-2024 | Original Article

Element differential method for contact problems with non-conforming contact discretization

Authors: Wei-Long Fan, Xiao-Wei Gao, Yong-Tong Zheng, Bing-Bing Xu, Hai-Feng Peng

Published in: Engineering with Computers | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new strong-form numerical method, the element differential method (EDM) is employed to solve two- and three-dimensional contact problems without friction. When using EDM, one can obtain the system of equations by directly differentiating the shape functions of Lagrange isoparametric elements for characterizing physical variables and geometry without the variational principle or any integration. Non-uniform contact discretization is used to enhance contact conditions, which avoids performing identical discretization along the contact surfaces of two contact objects. Two methods for imposing contact constraints are proposed. One method imposes Neumann boundary conditions on the contact surface, whereas the other directly applies the contact constraints as collocation equations for the nodes within the contact zone. The accuracy of the two methods is similar, but the multi-point constraints method does not increase the degrees of freedom of the system equations during the iteration process. The results of four numerical examples have verified the accuracy of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
4.
go back to reference Gay Neto A, de Pimenta P, M, Wriggers P (2018) Contact between spheres and general surfaces. Comput Methods Appl Mech Eng 328:686–716MathSciNetCrossRef Gay Neto A, de Pimenta P, M, Wriggers P (2018) Contact between spheres and general surfaces. Comput Methods Appl Mech Eng 328:686–716MathSciNetCrossRef
5.
go back to reference Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer-Verlag, Berlin/Heidelberg Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer-Verlag, Berlin/Heidelberg
6.
go back to reference Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180MathSciNetCrossRef Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180MathSciNetCrossRef
7.
8.
go back to reference Dandekar BW, Conant RJ (1992) An efficient equation solver for frictional contact problems using the boundary integral equation formulation. Commun Appl Numer Methods 8:171–178CrossRef Dandekar BW, Conant RJ (1992) An efficient equation solver for frictional contact problems using the boundary integral equation formulation. Commun Appl Numer Methods 8:171–178CrossRef
9.
go back to reference Man KW, Aliabadi MH, Rooke DP (1993) BEM frictional contact analysis: load incremental technique. Comput Struct 47:893–905CrossRef Man KW, Aliabadi MH, Rooke DP (1993) BEM frictional contact analysis: load incremental technique. Comput Struct 47:893–905CrossRef
10.
go back to reference Li G, Belytschko T (2001) Element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 18(1/2):62–78CrossRef Li G, Belytschko T (2001) Element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 18(1/2):62–78CrossRef
11.
go back to reference Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetCrossRef Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetCrossRef
12.
go back to reference Belgacem FB, Maday Y (1994) A spectral element methodology tuned to parallel implementations. Comput Methods Appl Mech Eng 116(1–4):59–67MathSciNetCrossRef Belgacem FB, Maday Y (1994) A spectral element methodology tuned to parallel implementations. Comput Methods Appl Mech Eng 116(1–4):59–67MathSciNetCrossRef
13.
go back to reference Belhachmi Z, Bernardi C (1994) Resolution of fourth-order problems by the mortar element method. Comput Methods Appl Mech Eng 116(1–4):53–58MathSciNetCrossRef Belhachmi Z, Bernardi C (1994) Resolution of fourth-order problems by the mortar element method. Comput Methods Appl Mech Eng 116(1–4):53–58MathSciNetCrossRef
14.
go back to reference Maday Y, Mavriplis C, Patera A (1988) Nonconforming mortar element methods: application to spectral discretizations (No.NASA-CR-181729) Maday Y, Mavriplis C, Patera A (1988) Nonconforming mortar element methods: application to spectral discretizations (No.NASA-CR-181729)
15.
go back to reference Wohlmuth BI (2001) Iterative solvers based on domain decomposition. In: Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Computational Science and Engineering, vol. 17. Springer, Berlin, Heidelberg Wohlmuth BI (2001) Iterative solvers based on domain decomposition. In: Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Computational Science and Engineering, vol. 17. Springer, Berlin, Heidelberg
16.
go back to reference Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629CrossRef Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629CrossRef
17.
go back to reference Farah P, Popp A, Wall WA (2015) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55:209–228MathSciNetCrossRef Farah P, Popp A, Wall WA (2015) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55:209–228MathSciNetCrossRef
18.
go back to reference Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271MathSciNetCrossRef Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271MathSciNetCrossRef
19.
go back to reference McDevitt T, Laursen T (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547MathSciNetCrossRef McDevitt T, Laursen T (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547MathSciNetCrossRef
20.
go back to reference Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59:315–336CrossRef Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59:315–336CrossRef
21.
go back to reference Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225MathSciNetCrossRef Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225MathSciNetCrossRef
22.
go back to reference Kim TY, Dolbow J, Laursen T (2007) A mortared finite element method for frictional contact on arbitrary interfaces. Comput Mech 39(3):223–235CrossRef Kim TY, Dolbow J, Laursen T (2007) A mortared finite element method for frictional contact on arbitrary interfaces. Comput Mech 39(3):223–235CrossRef
23.
go back to reference Khater AH, Temsah RS, Hassan MM (2008) A Chebyshev spectral collocation method for solving burgers’ type equations. J Comput Appl Math 222(2):333–350MathSciNetCrossRef Khater AH, Temsah RS, Hassan MM (2008) A Chebyshev spectral collocation method for solving burgers’ type equations. J Comput Appl Math 222(2):333–350MathSciNetCrossRef
24.
go back to reference Haq S, Hussain A, Uddin M (2011) RBFs meshless method of lines for the numerical solution of time-dependent nonlinear coupled partial differential equations. Appl Mat 2(4):414–423MathSciNetCrossRef Haq S, Hussain A, Uddin M (2011) RBFs meshless method of lines for the numerical solution of time-dependent nonlinear coupled partial differential equations. Appl Mat 2(4):414–423MathSciNetCrossRef
25.
go back to reference Liu GR, Zhang J, Li H, Lam KY, Kee BBT (2006) Radial point interpolation based finite difference method for mechanics problems. Int J Numer Methods Eng 68(7):728–754CrossRef Liu GR, Zhang J, Li H, Lam KY, Kee BBT (2006) Radial point interpolation based finite difference method for mechanics problems. Int J Numer Methods Eng 68(7):728–754CrossRef
26.
go back to reference Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542MathSciNetCrossRef Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542MathSciNetCrossRef
27.
28.
go back to reference Li M, Wen PH (2014) Finite block method for transient heat conduction analysis in functionally graded media. Int J Numer Methods Eng. 99(5):372–390MathSciNetCrossRef Li M, Wen PH (2014) Finite block method for transient heat conduction analysis in functionally graded media. Int J Numer Methods Eng. 99(5):372–390MathSciNetCrossRef
29.
go back to reference Li M, Lei M, Munjiza A, Wen PH (2015) Frictional contact analysis of functionally graded materials with Lagrange finite block method. Int J Numer Methods Eng 103(6):391–412MathSciNetCrossRef Li M, Lei M, Munjiza A, Wen PH (2015) Frictional contact analysis of functionally graded materials with Lagrange finite block method. Int J Numer Methods Eng 103(6):391–412MathSciNetCrossRef
30.
go back to reference Almasi A, Kim T-Y, Song J-H (2022) Strong form meshfree collocation method for frictional contact between a rigid pile and an elastic foundation. Eng Comput 39(1):791–807CrossRef Almasi A, Kim T-Y, Song J-H (2022) Strong form meshfree collocation method for frictional contact between a rigid pile and an elastic foundation. Eng Comput 39(1):791–807CrossRef
31.
go back to reference De Lorenzis L, Evans J, Hughes TJ, Reali A (2015) Isogeometric collocation: Neumann boundary conditions and contact. Comput Methods Appl Mech Eng 284:21–54MathSciNetCrossRef De Lorenzis L, Evans J, Hughes TJ, Reali A (2015) Isogeometric collocation: Neumann boundary conditions and contact. Comput Methods Appl Mech Eng 284:21–54MathSciNetCrossRef
32.
go back to reference Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes TJ (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112MathSciNetCrossRef Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes TJ (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112MathSciNetCrossRef
33.
go back to reference Zheng YT, Gao XW, Liu YJ (2023) Numerical modelling of braided ceramic fiber seals by using element differential method. Compos Struct 304:116461CrossRef Zheng YT, Gao XW, Liu YJ (2023) Numerical modelling of braided ceramic fiber seals by using element differential method. Compos Struct 304:116461CrossRef
34.
go back to reference Gao XW, Huang SZ, Cui M, Ruan B, Zhu QH, Yang K, Lv J, Peng HF (2017) Element differential method for solving general heat conduction problems. Int J Heat Mass Transf 115:882–894CrossRef Gao XW, Huang SZ, Cui M, Ruan B, Zhu QH, Yang K, Lv J, Peng HF (2017) Element differential method for solving general heat conduction problems. Int J Heat Mass Transf 115:882–894CrossRef
35.
go back to reference Gao XW, Li ZY, Yang K et al (2018) Element differential method and its application in thermal-mechanical problems. Int J Numer Methods Eng 113:82–108MathSciNetCrossRef Gao XW, Li ZY, Yang K et al (2018) Element differential method and its application in thermal-mechanical problems. Int J Numer Methods Eng 113:82–108MathSciNetCrossRef
36.
go back to reference Lv J, Shao MJ, Cui M, Gao XW (2019) An efficient collocation approach for piezoelectric problems based on the element differential method. Compos Struct 230:111483CrossRef Lv J, Shao MJ, Cui M, Gao XW (2019) An efficient collocation approach for piezoelectric problems based on the element differential method. Compos Struct 230:111483CrossRef
37.
go back to reference Jiang WW, Gao XW, Xu BB, Lv J (2023) Static and forced vibration analysis of layered piezoelectric functionally graded structures based on element differential method. Appl Math Comput 437:127548MathSciNet Jiang WW, Gao XW, Xu BB, Lv J (2023) Static and forced vibration analysis of layered piezoelectric functionally graded structures based on element differential method. Appl Math Comput 437:127548MathSciNet
38.
go back to reference Zheng YT, Gao XW, Lv J, Peng HF (2020) Weak-form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions. Int J Numer Methods Eng 121:3722–3741MathSciNetCrossRef Zheng YT, Gao XW, Lv J, Peng HF (2020) Weak-form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions. Int J Numer Methods Eng 121:3722–3741MathSciNetCrossRef
40.
go back to reference Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, New Jersey Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, New Jersey
41.
go back to reference Shu X, Zhang J, Han L et al (2016) A surface-to-surface scheme for 3D contact problems by boundary face method. Eng Anal Bound Elem 70:23–30MathSciNetCrossRef Shu X, Zhang J, Han L et al (2016) A surface-to-surface scheme for 3D contact problems by boundary face method. Eng Anal Bound Elem 70:23–30MathSciNetCrossRef
Metadata
Title
Element differential method for contact problems with non-conforming contact discretization
Authors
Wei-Long Fan
Xiao-Wei Gao
Yong-Tong Zheng
Bing-Bing Xu
Hai-Feng Peng
Publication date
09-04-2024
Publisher
Springer London
Published in
Engineering with Computers / Issue 5/2024
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-01963-7