Skip to main content
Top
Published in:

15-04-2024 | Original Article

Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers

Authors: Xiaolin Li, Shuling Li

Published in: Engineering with Computers | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A stabilized element-free Galerkin (EFG) method is proposed in this paper for numerical analysis of the generalized steady MHD duct flow problems at arbitrary and high Hartmann numbers up to \(10^{16}\). Computational formulas of the EFG method for MHD duct flows are derived by using Nitsche’s technique to facilitate the implementation of Dirichlet boundary conditions. The reproducing kernel gradient smoothing integration technique is incorporated into the EFG method to accelerate the solution procedure impaired by Gauss quadrature rules. A stabilized Nitsche-type EFG weak formulation of MHD duct flows is devised to enhance the performance damaged by high Hartmann numbers. Several benchmark MHD duct flow problems are solved to testify the stability and the accuracy of the present EFG method. Numerical results show that the range of the Hartmann number Ha in the present EFG method is \(1\le Ha\le 10^{16}\), which is much larger than that in existing numerical methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nesliturk AI, Tezer-Sezgin M (2005) The finite element method for MHD flow at high Hartmann numbers. Comput Methods Appl Mech Eng 194:1201–1224MathSciNet Nesliturk AI, Tezer-Sezgin M (2005) The finite element method for MHD flow at high Hartmann numbers. Comput Methods Appl Mech Eng 194:1201–1224MathSciNet
2.
go back to reference Hsieh PW, Yang SY (2009) A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers. J Comput Phys 228:8301–8320MathSciNet Hsieh PW, Yang SY (2009) A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers. J Comput Phys 228:8301–8320MathSciNet
3.
go back to reference Zhao JK, Mao SP, Zheng WY (2016) Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers. Appl Math Mech Engl Ed 37:1479–1500MathSciNet Zhao JK, Mao SP, Zheng WY (2016) Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers. Appl Math Mech Engl Ed 37:1479–1500MathSciNet
4.
go back to reference Hsieh PW, Yang SY (2010) Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems. J Comput Phys 229:9216–9234MathSciNet Hsieh PW, Yang SY (2010) Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems. J Comput Phys 229:9216–9234MathSciNet
5.
go back to reference Li Y, Tian ZF (2012) An exponential compact difference scheme for solving 2D steady magnetohydrodynamic (MHD) duct flow problems. J Comput Phys 231:5443–5468 Li Y, Tian ZF (2012) An exponential compact difference scheme for solving 2D steady magnetohydrodynamic (MHD) duct flow problems. J Comput Phys 231:5443–5468
6.
go back to reference Zhou K, Ni SH, Tian ZF (2015) Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers. Comput Phys Commun 196:194–211 Zhou K, Ni SH, Tian ZF (2015) Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers. Comput Phys Commun 196:194–211
7.
go back to reference Bozkaya C, Tezer-Sezgin M (2012) A direct BEM solution to MHD flow in electrodynamically coupled rectangular channels. Comput Fluids 66:177–182MathSciNet Bozkaya C, Tezer-Sezgin M (2012) A direct BEM solution to MHD flow in electrodynamically coupled rectangular channels. Comput Fluids 66:177–182MathSciNet
8.
go back to reference Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351MathSciNet Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351MathSciNet
9.
go back to reference Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Philos Soc 49:136–144MathSciNet Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Philos Soc 49:136–144MathSciNet
10.
go back to reference Hsieh PW, Shih Y, Yang SY (2011) A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun Comput Phys 10:161–182MathSciNet Hsieh PW, Shih Y, Yang SY (2011) A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun Comput Phys 10:161–182MathSciNet
11.
go back to reference Cai XH, Su GH, Qiu SZ (2011) Local radial point interpolation method for the fully developed magnetohydrodynamic flow. Appl Math Comput 217:4529–4539MathSciNet Cai XH, Su GH, Qiu SZ (2011) Local radial point interpolation method for the fully developed magnetohydrodynamic flow. Appl Math Comput 217:4529–4539MathSciNet
12.
go back to reference Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis GC (2009) An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems. J Comput Phys 228:8135–8160MathSciNet Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis GC (2009) An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems. J Comput Phys 228:8135–8160MathSciNet
13.
go back to reference Cai XH, Su GH, Qiu SZ (2011) Upwinding meshfree point collocation method for steady MHD flow with arbitrary orientation of applied magnetic field at high Hartmann numbers. Comput Fluids 44:153–161MathSciNet Cai XH, Su GH, Qiu SZ (2011) Upwinding meshfree point collocation method for steady MHD flow with arbitrary orientation of applied magnetic field at high Hartmann numbers. Comput Fluids 44:153–161MathSciNet
14.
go back to reference Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations. Comput Math Appl 70:2292–2315MathSciNet Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations. Comput Math Appl 70:2292–2315MathSciNet
15.
go back to reference Tatari M, Shahriari M, Raoof M (2016) Numerical modeling of magneto-hydrodynamics flows using reproducing kernel particle method. Int J Numer Model 29:548–564 Tatari M, Shahriari M, Raoof M (2016) Numerical modeling of magneto-hydrodynamics flows using reproducing kernel particle method. Int J Numer Model 29:548–564
16.
go back to reference Bourantas GC, Loukopoulos VC, Joldes GR, Wittek A, Miller K (2019) An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow. Appl Math Comput 348:215–233MathSciNet Bourantas GC, Loukopoulos VC, Joldes GR, Wittek A, Miller K (2019) An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow. Appl Math Comput 348:215–233MathSciNet
17.
go back to reference Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256MathSciNet Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256MathSciNet
18.
go back to reference Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944 Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944
19.
go back to reference Dehghan M, Abbaszadeh M (2019) Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl Numer Math 137:252–273MathSciNet Dehghan M, Abbaszadeh M (2019) Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl Numer Math 137:252–273MathSciNet
20.
go back to reference Zhang L, Ouyang J, Zhang XH (2008) The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys Lett A 372:5625–5638 Zhang L, Ouyang J, Zhang XH (2008) The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys Lett A 372:5625–5638
21.
go back to reference Zhang L, Ouyang J, Zhang XH (2013) The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers. Comput Phys Commun 184:1106–1118MathSciNet Zhang L, Ouyang J, Zhang XH (2013) The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers. Comput Phys Commun 184:1106–1118MathSciNet
22.
go back to reference Jannesari Z, Tatari M (2022) Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method. Eng Comput 38:679–693 Jannesari Z, Tatari M (2022) Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method. Eng Comput 38:679–693
23.
go back to reference Zhang Z, Hao SY, Liew KM, Cheng YM (2013) The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng Anal Bound Elem 37:1576–1584MathSciNet Zhang Z, Hao SY, Liew KM, Cheng YM (2013) The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng Anal Bound Elem 37:1576–1584MathSciNet
24.
go back to reference Cheng H, Peng MJ, Cheng YM (2020) The hybrid complex variable element-free Galerkin method for 3D elasticity problems. Eng Struct 219:110835 Cheng H, Peng MJ, Cheng YM (2020) The hybrid complex variable element-free Galerkin method for 3D elasticity problems. Eng Struct 219:110835
25.
go back to reference Wu Q, Peng MJ, Cheng YM (2022) The interpolating dimension splitting element-free Galerkin method for 3D potential problems. Eng Comput 38:2703–2717 Wu Q, Peng MJ, Cheng YM (2022) The interpolating dimension splitting element-free Galerkin method for 3D potential problems. Eng Comput 38:2703–2717
26.
go back to reference Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466 Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466
27.
go back to reference Babuška I, Banerjee U, Osborn JE, Zhang QH (2009) Effect of numerical integration on meshless methods. Comput Methods Appl Mech Eng 198:2886–2897MathSciNet Babuška I, Banerjee U, Osborn JE, Zhang QH (2009) Effect of numerical integration on meshless methods. Comput Methods Appl Mech Eng 198:2886–2897MathSciNet
28.
go back to reference Duan QL, Gao X, Wang BB, Li XK, Zhang HW (2014) A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistency formulation. Comput Methods Appl Mech Eng 280:84–116 Duan QL, Gao X, Wang BB, Li XK, Zhang HW (2014) A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistency formulation. Comput Methods Appl Mech Eng 280:84–116
29.
go back to reference Wang DD, Wu JC (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519MathSciNet Wang DD, Wu JC (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519MathSciNet
30.
go back to reference Wang DD, Wu JC (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672MathSciNet Wang DD, Wu JC (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672MathSciNet
31.
go back to reference Wu JC, Wang DD (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631MathSciNet Wu JC, Wang DD (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631MathSciNet
32.
go back to reference Li XL (2023) Theoretical analysis of the reproducing kernel gradient smoothing integration technique in Galerkin meshless methods. J Comput Math 41(3):483–506MathSciNet Li XL (2023) Theoretical analysis of the reproducing kernel gradient smoothing integration technique in Galerkin meshless methods. J Comput Math 41(3):483–506MathSciNet
33.
go back to reference Wang JR, Wu JC, Wang DD (2020) A quasi-consistent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions. Eng Anal Bound Elem 110:42–55MathSciNet Wang JR, Wu JC, Wang DD (2020) A quasi-consistent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions. Eng Anal Bound Elem 110:42–55MathSciNet
34.
go back to reference Du HH, Wu JC, Wang DD, Chen J (2022) A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity. Comput Mech 70:73–100MathSciNet Du HH, Wu JC, Wang DD, Chen J (2022) A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity. Comput Mech 70:73–100MathSciNet
35.
go back to reference Li XL, Li SL (2023) Effect of an efficient numerical integration technique on the element-free Galerkin method. Appl Numer Math 193:204–225MathSciNet Li XL, Li SL (2023) Effect of an efficient numerical integration technique on the element-free Galerkin method. Appl Numer Math 193:204–225MathSciNet
36.
go back to reference Li XL (2023) Element-free Galerkin analysis of Stokes problems using the reproducing kernel gradient smoothing integration. J Sci Comput 96(2):43MathSciNet Li XL (2023) Element-free Galerkin analysis of Stokes problems using the reproducing kernel gradient smoothing integration. J Sci Comput 96(2):43MathSciNet
37.
go back to reference Li XL (2024) A weak Galerkin meshless method for incompressible Navier–Stokes equations. J Comput Appl Math 445:115823MathSciNet Li XL (2024) A weak Galerkin meshless method for incompressible Navier–Stokes equations. J Comput Appl Math 445:115823MathSciNet
38.
go back to reference Babuška I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12:1–125MathSciNet Babuška I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12:1–125MathSciNet
39.
go back to reference Fernandez-Mendez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275MathSciNet Fernandez-Mendez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275MathSciNet
40.
go back to reference Li XL, Li SL (2023) Meshless Galerkin analysis of the generalized Stokes problem. Comput Math Appl 144:164–181MathSciNet Li XL, Li SL (2023) Meshless Galerkin analysis of the generalized Stokes problem. Comput Math Appl 144:164–181MathSciNet
41.
go back to reference Li XL (2023) A stabilized element-free Galerkin method for the advection-diffusion-reaction problem. Appl Math Lett 146:108831MathSciNet Li XL (2023) A stabilized element-free Galerkin method for the advection-diffusion-reaction problem. Appl Math Lett 146:108831MathSciNet
42.
go back to reference Hauke G (2002) A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput Methods Appl Mech Eng 191:2925–2947MathSciNet Hauke G (2002) A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput Methods Appl Mech Eng 191:2925–2947MathSciNet
43.
go back to reference Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156:185–210MathSciNet Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156:185–210MathSciNet
44.
go back to reference Lancaster P, Salkauskas K (1981) Surface generated by moving least squares methods. Math Comput 37:141–158MathSciNet Lancaster P, Salkauskas K (1981) Surface generated by moving least squares methods. Math Comput 37:141–158MathSciNet
45.
go back to reference Li XL (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in \(n\)-dimensional spaces. Appl Numer Math 99:77–97MathSciNet Li XL (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in \(n\)-dimensional spaces. Appl Numer Math 99:77–97MathSciNet
Metadata
Title
Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers
Authors
Xiaolin Li
Shuling Li
Publication date
15-04-2024
Publisher
Springer London
Published in
Engineering with Computers / Issue 5/2024
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-01969-1