Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-05-2020 | Original Article | Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

ELM-MC: multi-label classification framework based on extreme learning machine

Journal:
International Journal of Machine Learning and Cybernetics > Issue 10/2020
Authors:
Haigang Zhang, Jinfeng Yang, Guimin Jia, Shaocheng Han, Xinran Zhou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Multi-label classification methods aim to a class of application problems where each individual contains a single instance while associates with a set of labels simultaneously. In this paper, we formulate a novel multi-label classification method based on extreme learning machine framework, named ELM-MC algorithm. The essence of ELM-MC algorithm is to convert the multi-label classification problem into some single-label classifications, and fully considers the relationship among different labels. After the classification of one label, the associations with next label are applied to update the learning parameters in ELM-MC algorithm. In addition, we design a backup pool for the hidden nodes. It can help to select relatively suitable hidden nodes to the corresponding label classification case. In the simulation part, six famous databases are applied to demonstrate the satisfied classification accuracy of the proposed method.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Go to the issue